Clinicopathologic and Genetic Profiling through Machine Learning and Natural Language Processing for Precision Lung Cancer Management
通过机器学习和自然语言处理进行临床病理学和基因分析,实现肺癌精准管理
基本信息
- 批准号:10250521
- 负责人:
- 金额:$ 37.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-25 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectArchitectureAttentionBioinformaticsBiological MarkersCancer EtiologyCancer PatientCessation of lifeCharacteristicsClinicalClinical DataClinical Decision Support SystemsCollaborationsColorectal CancerComputer ModelsComputerized Medical RecordComputing MethodologiesDNA Sequence AlterationDataData SetData SourcesDevelopmentDrug resistanceDrug usageFamilyFoundationsGeneticGenomicsGlioblastomaHealthHealth PersonnelHealthcareInformation RetrievalKnowledgeLaboratoriesLinkMachine LearningMalignant neoplasm of lungMeasuresMedicalMedical RecordsMedical centerMethodsModelingMutationNatural Language ProcessingNon-Small-Cell Lung CarcinomaOntologyOutcomePathologicPathologyPathology ReportPathway interactionsPatientsPatternPerformancePharmaceutical PreparationsPublic HealthRecording of previous eventsRecurrenceResearch PersonnelResistanceResistance developmentSecond Primary CancersSemanticsSmoking StatusSomatic MutationStatistical MethodsTechnologyTestingTimeTissuesTranslational ResearchTumor PathologyUnited States National Institutes of HealthUniversitiesValidationVermontWomanWorkactionable mutationanticancer researchbasecancer cellcancer therapycancer typeclinically actionabledemographicsdesignelectronic datagenetic profilingimprovedinnovationlung cancer cellmachine learning methodmalignant breast neoplasmmelanomamennovelpersonalized medicinepower analysisprecision medicineresistance mechanismresponsescreeningtargeted cancer therapytargeted treatmenttreatment responsetreatment strategytumor
项目摘要
PROJECT SUMMARY/ABSTRACT
Lung cancer is the second-most common type of cancer and the leading cause of cancer death in men and
women. Among the different types of lung cancer, non-small cell lung cancer (NSCLC) is the most common type
and it constitutes 85% to 90% of all lung cancer cases. Current cancer research has shown that multiple somatic
mutations affect the sensitivity of patients to various drugs used for NSCLC treatment. These mutations are
essential factors for determining the most effective, “personalized” treatment for each NSCLC patient; however,
most NSCLC patients develop resistance to these targeted therapies in their first year of treatment. Many
mechanisms of this resistance are still unknown. Designing and prescribing better targeted therapies for NSCLC
patients requires further understanding, particularly with respect to the relationship between NSCLC tumors’
pathological and clinical findings, genetic profiles, and targeted therapy responses/resistance. Currently, there is
no computational method to connect observations and findings from pathology reports, medical records, somatic
mutations, and the targeted therapy resistance. This project provides a plan to build a novel computational method
to identify statistically significant associations between the pathological findings of NSCLC tumors and the
presence of clinically-actionable somatic mutations. Furthermore, these associations, in combination with an
innovative set of feature analysis from pathology reports and electronic medical records, will be leveraged to
build and validate a machine-learning model to identify NSCLC patients with clinically-actionable somatic
mutations. Finally, the associated clinical, pathological, and genetic findings for NSCLC patients will be used in
a new machine-learning framework to predict patients’ time-to-resistance to targeted therapies. The required
data to build and validate the proposed models in this project will be obtained through a collaboration with the
Department of Pathology’s Laboratory for Clinical Genomics and Advanced Technologies at Dartmouth-Hitchcock
Medical Center. In addition to internal validation, the investigators in this proposal established a collaboration with
the Department of Pathology at the University of Vermont Medical Center to apply and validate the developed
models on an external data source. Upon successful implementation of this bioinformatics approach, the
developed models will be able to reveal statistically significant links between clinical and pathological findings,
clinically-actionable somatic mutations, and targeted-therapy responses for a better understanding of NSCLC
tumor development and treatment. The proposed approach will provide an accurate, fast, and inexpensive pre-
selection method for screening NSCLC patients with clinically-actionable mutations for translational research and
precision medicine. Furthermore, the proposed machine-learning method to identify NSCLC patients’ resistance to
targeted therapies will help healthcare providers to select the best treatment strategies for these patients, improve
their health outcomes, and establish this precision medicine paradigm for other types of cancer.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saeed Hassanpour其他文献
Saeed Hassanpour的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saeed Hassanpour', 18)}}的其他基金
Advancing Digital Pathology through Novel Machine Learning Methodologies
通过新颖的机器学习方法推进数字病理学
- 批准号:
10458237 - 财政年份:2022
- 资助金额:
$ 37.52万 - 项目类别:
Advancing Digital Pathology through Novel Machine Learning Methodologies
通过新颖的机器学习方法推进数字病理学
- 批准号:
10684661 - 财政年份:2022
- 资助金额:
$ 37.52万 - 项目类别:
Improving Colorectal Cancer Screening and Risk Assessment through Deep Learning on Medical Images and Records
通过医学图像和记录的深度学习改进结直肠癌筛查和风险评估
- 批准号:
10316231 - 财政年份:2019
- 资助金额:
$ 37.52万 - 项目类别:
Clinicopathologic and Genetic Profiling through Machine Learning and Natural Language Processing for Precision Lung Cancer Management
通过机器学习和自然语言处理进行临床病理学和基因分析,实现肺癌精准管理
- 批准号:
10023259 - 财政年份:2019
- 资助金额:
$ 37.52万 - 项目类别:
Clinicopathologic and Genetic Profiling through Machine Learning and Natural Language Processing for Precision Lung Cancer Management
通过机器学习和自然语言处理进行临床病理学和基因分析,实现肺癌精准管理
- 批准号:
10475120 - 财政年份:2019
- 资助金额:
$ 37.52万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 37.52万 - 项目类别:
Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 37.52万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 37.52万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 37.52万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 37.52万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 37.52万 - 项目类别:
Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 37.52万 - 项目类别:
Studentship
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 37.52万 - 项目类别:
Research Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 37.52万 - 项目类别:
Fellowship
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 37.52万 - 项目类别:
Standard Grant