Discovering miRNA-Mediated Mechanisms of Interneuron Development
发现 miRNA 介导的中间神经元发育机制
基本信息
- 批准号:10684683
- 负责人:
- 金额:$ 4.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAccelerationAgeApoptosisBioinformaticsBiological AssayBrainCASP3 geneCRISPR-mediated transcriptional activationCRISPR/Cas technologyCandidate Disease GeneCell DeathCellsClustered Regularly Interspaced Short Palindromic RepeatsCompensationComplexCuesDataData SetDefectDevelopmentDevelopmental GeneDiseaseFailureFluorescence-Activated Cell SortingFunctional disorderGene ExpressionGenesGeneticImmunoprecipitationIn VitroIndividualInterneuron functionInterneuronsMedialMediatingMental disordersMessenger RNAMethodsMicroRNAsMolecularMutateNatureNeurodevelopmental DisorderParvalbuminsPathway interactionsPatientsPatternPhenotypePlayPositioning AttributeProcessRapid screeningRegulationRegulator GenesResearchResponse ElementsRoleSchizophreniaSeriesSignal TransductionSliceSomatostatinSpecific qualifier valueTimeTranslational RepressionTranslational ResearchWorkautism spectrum disordercell typecombinatorialcrosslinkderepressiondifferential expressiondosageexperimental studygene discoveryin vivoinnovationinsightmRNA Translationmigrationneuropsychiatric disorderposttranscriptionalpreventprogenitorprogramstranscriptome
项目摘要
Project Summary
Inhibitory interneuron (IN) development requires successful completion of a series of
processes, which include long-range migration, lamination, molecular specification, circuit
integration, and functional maturation. IN dysfunction is highly implicated in neurodevelopmental
and psychiatric disorders, so understanding how INs achieve their mature distribution, number,
and identity is critical to understanding disease. Cell-intrinsic gene expression programs, involving
the precise regulation of huge sets of genes, interact with environmental cues to control
development. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression known
to be necessary for multiple aspects of IN development, yet the specific mechanisms by which
miRNAs do this remain unknown, in part because IN-specific patterns of miRNA activity were
unknown. We bridged this gap by performing Ago cross-linking and immunoprecipitation followed
by sequencing (Ago CLIPseq) to comprehensively profile the IN targetome at developmental
timepoints. However, identifying developmental pathways regulated by individual miRNAs has
been challenging because the targetome is extremely complex—miRNAs simultaneously regulate
many genes and can compensate for each other through co-targeting relationships. We propose
an alternative approach of investigating miRNA regulation on a gene-by-gene level. Through
bioinformatic analysis of the CLIPseq data, I identified miRNA hotspots, or genes co-targeted by
multiple miRNAs, which we hypothesize is a signature of strong miRNA regulation shared by
many key developmental genes. With these candidate genes, I am now poised to untangle how
miRNA regulation of specific genes controls particular aspects of IN development. I will use new
CRISPR-based methods for disrupting miRNA regulation of candidate genes in a cell type-specific
manner and screen for developmental defects, first using a set of in vitro and in vivo readouts for
IN migration, survival, and subtype specification. Then, I will assess perturbations of overall
developmental trajectory using targeted Perturb-seq, which harnesses the transcriptome as a
complex readout of maturation state in single cells. Ultimately, with this experimental pipeline I
will discover genes and miRNA mechanisms that control IN development.
项目摘要
抑制性中间神经元(IN)的发育需要成功完成一系列
工艺,包括长距离迁移、层压、分子规格、电路
整合和功能成熟。IN功能障碍与神经发育密切相关。
和精神疾病,因此了解IN如何实现其成熟的分布,数量,
身份对于理解疾病至关重要。细胞内在基因表达程序,包括
大量基因的精确调控,与环境因素相互作用,
发展microRNA(miRNAs)是已知的基因表达的转录后调节因子,
对于IN开发的多个方面都是必要的,但具体的机制,
miRNAs做到这一点仍然是未知的,部分原因是由于IN特异性的miRNAs活性模式是
未知我们通过进行Ago交联和免疫沉淀,
通过测序(Ago CLIPseq)来全面地描绘发育时的IN靶组,
时间点。然而,识别由单个miRNA调控的发育途径,
因为靶组非常复杂,miRNA同时调节
许多基因,并可以通过共同靶向关系相互补偿。我们提出
一种在基因水平上研究miRNA调控的替代方法。通过
通过对CLIPseq数据的生物信息学分析,我确定了miRNA热点,或者说是共同靶向的基因。
多个miRNA,我们假设这是一个强大的miRNA调控共享的签名,
许多关键的发育基因。有了这些候选基因,我现在准备解开
特定基因的miRNA调控控制IN发展的特定方面。我会用新的
基于CRISPR的方法用于破坏细胞类型特异性表达中候选基因的miRNA调控
方法和筛选发育缺陷,首先使用一组体外和体内读数,
IN迁移、存活和亚型规范。然后,我将评估整体的扰动,
发展轨迹使用靶向Perturb-seq,它利用转录组作为一个
单个细胞成熟状态的复杂读出。最终,有了这个实验性的管道,
将发现控制IN发展的基因和miRNA机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica Xinyun Du其他文献
Jessica Xinyun Du的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica Xinyun Du', 18)}}的其他基金
Discovering miRNA-mediated mechanisms of interneuron development
发现 miRNA 介导的中间神经元发育机制
- 批准号:
10315336 - 财政年份:2021
- 资助金额:
$ 4.2万 - 项目类别:
Discovering miRNA-Mediated Mechanisms of Interneuron Development
发现 miRNA 介导的中间神经元发育机制
- 批准号:
10477017 - 财政年份:2021
- 资助金额:
$ 4.2万 - 项目类别:
相似海外基金
Epigenetic Age Acceleration Impacts Racial and Neighborhood Disparities in Chronic Low Back Pain
表观遗传年龄加速影响慢性腰痛的种族和社区差异
- 批准号:
10431156 - 财政年份:2022
- 资助金额:
$ 4.2万 - 项目类别:
Epigenetic Age Acceleration and Psychoneurological Symptoms in Sickle Cell Disease
镰状细胞病的表观遗传年龄加速和精神神经症状
- 批准号:
10594523 - 财政年份:2022
- 资助金额:
$ 4.2万 - 项目类别:
Early Life Cardiovascular Disease Risk Factors, Epigenetic Age Acceleration, and Alzheimer's Disease Related Brain Health
生命早期心血管疾病危险因素、表观遗传年龄加速和阿尔茨海默病相关的大脑健康
- 批准号:
10706044 - 财政年份:2022
- 资助金额:
$ 4.2万 - 项目类别:
The pathway from prenatal pregnancy-specific anxiety to offspring ADHD through epigenetic age acceleration DNA methylation and moderators to target intervention: Partner social support
通过表观遗传年龄加速 DNA 甲基化和调节因子从产前妊娠特异性焦虑到后代 ADHD 的途径:伴侣社会支持
- 批准号:
475968 - 财政年份:2022
- 资助金额:
$ 4.2万 - 项目类别:
Studentship Programs
Epigenetic Age Acceleration and Psychoneurological Symptoms in Sickle Cell Disease
镰状细胞病的表观遗传年龄加速和精神神经症状
- 批准号:
10449461 - 财政年份:2022
- 资助金额:
$ 4.2万 - 项目类别:
Functional genetic analysis of epigenetic age acceleration and the regulatory landscape of the methylome
表观遗传年龄加速的功能遗传分析和甲基化组的调控景观
- 批准号:
10674263 - 财政年份:2022
- 资助金额:
$ 4.2万 - 项目类别:
Perinatal Maternal Anxiety and Offspring ADHD Symptoms: Mediation Through Epigenetic Age Acceleration DNA Methylation
围产期母亲焦虑和后代 ADHD 症状:通过表观遗传年龄加速 DNA 甲基化进行调节
- 批准号:
467256 - 财政年份:2021
- 资助金额:
$ 4.2万 - 项目类别:
Studentship Programs
CAREER: Understanding the Role of Cu-Containing Secondary Phase Particles in Enhancing the Resistance to the Environmental Acceleration to Fatigue in Age-Hardenable Al Alloys
事业:了解含铜第二相颗粒在增强时效硬化铝合金的环境加速疲劳抵抗力方面的作用
- 批准号:
1943870 - 财政年份:2020
- 资助金额:
$ 4.2万 - 项目类别:
Continuing Grant
Breast Cancer Risk Factors and Epigenetic Age Acceleration
乳腺癌危险因素和表观遗传年龄加速
- 批准号:
10614228 - 财政年份:2020
- 资助金额:
$ 4.2万 - 项目类别:
The Clock is Ticking: Epigenetic Age Acceleration as a Biomarker of Uterine Function in Pregnancy
时钟在滴答作响:表观遗传年龄加速作为妊娠期子宫功能的生物标志物
- 批准号:
10630244 - 财政年份:2020
- 资助金额:
$ 4.2万 - 项目类别: