Alzheimer's MultiOme Data Repurposing: Artificial Intelligence, Network Medicine, and Therapeutics Discovery
阿尔茨海默氏症多组数据再利用:人工智能、网络医学和治疗方法发现
基本信息
- 批准号:10684138
- 负责人:
- 金额:$ 79.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:Adverse effectsAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaArtificial IntelligenceBayesian ModelingBindingBinding ProteinsBrainCaringCell NucleusCellsCerebrospinal FluidChromatinClinicClinicalClinical DataCodeComplexComputersDataDatabasesDementiaDevelopmentDiseaseDisease OutcomeDrug CombinationsDrug TargetingElectronic Health RecordFoundationsGene Expression RegulationGene TargetingGenesGeneticGenomeGenomicsGenotype-Tissue Expression ProjectGerm-Line MutationGoalsHi-CHistonesHumanHuman GenomeIntelligenceInvestmentsLinkMedicineMethodologyMolecularMultiomic DataNerve DegenerationNetwork-basedNeurodegenerative DisordersNucleic Acid Regulatory SequencesPathogenesisPatientsPersonsPharmaceutical PreparationsPharmacoepidemiologyPharmacologic SubstancePlasmaPopulationPost-Translational Modification SitePredispositionProcessProtein ConformationProteinsPublicationsQuantitative Trait LociRegulator GenesResearchSample SizeStructureSusceptibility GeneSystemSystems BiologyTechnologyTestingTherapeuticTherapeutic InterventionTransgenic MiceUnited StatesUnited States National Institutes of HealthUntranslated RNAValidationVariantVisualizationbiobankbiomarker panelbrain healthcandidate identificationcausal variantcell typecohortdata resourcedeep learning modeldrug candidatedrug discoverydrug repurposingendophenotypeethnic diversityexome sequencinggene discoverygene networkgene regulatory networkgenetic architecturegenome wide association studygenome-widegenomic datahuman genome sequencingimproved outcomein silicoinnovationkernel methodsmouse modelmultimodalitymultiple omicsneglectneuroimagingnew therapeutic targetnovelpopulation basedprecision medicineprotein expressionprotein protein interactionprotein structurerare variantresearch and developmentrisk variantsingle cell analysisstatisticssuccesstargeted treatmenttherapeutic developmenttooltranscription factortranscriptomicswhole genome
项目摘要
PROJECT SUMMARY
Predisposition to AD involves a complex, polygenic, and pleiotropic genetic architecture; furthermore, there are
no disease modifying treatments that slow the neurodegenerative process for AD. Traditional reductionist
paradigms overlook the inherent complexity of AD and have often led to treatments that are lack of clinical
benefits or fraught with adverse effects. Existing multi-omics data resources, including genetics, genomics,
transcriptomics, interactomics (protein-protein interactions and chromatin interactions), have not yet been fully
utilized and integrated to explore the pathobiology and drug discovery for AD. Understanding AD genetics
and genomics from the point-of-view of how cellular systems and molecular interactome perturbations underlie
the disease (termed disease module) is the essence of network medicine. Systematic identification and
characterization of novel underlying pathogenesis and disease module, will serve as a foundation for identifying
and validating novel risk genes and drug targets in AD. Given our preliminary results, we posit that a genome-
wide, multimodal artificial intelligence (AI) framework to identify new risk genes and networks from human
genome/exome sequencing and multi-omics findings enable a more complete mechanistic understanding of AD
pathogenesis and the rapid development of targeted therapeutic intervention for AD with great success. Aim 1
will determine whether rare coding and non-coding variants by whole-genome/exome sequencing (WGS/WES)
are enriched in protein-functional and gene-regulatory regions using sequence and structure-based deep
learning models. These analyses will assemble WGS/WES and clinical data from Alzheimer's Disease
Sequencing Project (ADSP), publicly available protein structure (i.e., protein-protein interfaces, protein-ligand
binding sites, post-translational modifications) and sequence (expression quantitative trait locus [eQTLs],
histone-QTLs, and transcription factor binding-QTLs) information from the PDB database, GTEx, NIH RoadMap,
FANTOM5, PsychENCODE, and NIH 4D Nucleome. Aim 2 will determine whether GWAS common variants
linked to AD pathobiology and endophenotypes are enriched in gene regulatory networks in a cell-type specific
manner using a Bayesian framework. We will validate risk gene and network findings using WGS/WES and
protein panel expression data from our existing cohorts: The Cleveland Clinic Lou Ruvo Center for Brain Health
Aging and Neurodegenerative Disease Biobank (CBH-Biobank) and the Cleveland Alzheimer's Disease
Research Center (CADRC). Aim 3 will test the hypothesis that risk genes and networks can be modulated via
in silico drug repurposing, population-based validation, and functional test, to identify candidate agents and drug
combinations that will modify AD. The successful completion of this project will offer capable and intelligent
computer-based toolboxes that enable searching, sharing, visualizing, querying, and analyzing genetics,
genomics, and multi-omics profiling data for genome-informed therapeutic discoveries for AD and other
neurodegenerative disease if broadly applied.
项目总结
阿尔茨海默病的易感性涉及复杂的、多基因的和多效性的遗传结构;此外,还有
没有可以延缓阿尔茨海默病神经退化过程的疾病调整治疗。传统简化论者
范式忽视了AD的内在复杂性,并往往导致缺乏临床治疗
有益的或充满不利影响的。现有的多组学数据资源,包括遗传学、基因组学、
转录组学、互作组学(蛋白质-蛋白质相互作用和染色质相互作用)尚未完全完成
利用和整合,探索AD的病理生物学和药物发现。了解阿尔茨海默病遗传学
以及基因组学从细胞系统和分子相互作用组扰动的角度来看
疾病(称为疾病模块)是网络医学的本质。系统的识别和
新的潜在发病机制和疾病模块的特征,将作为识别
以及验证AD的新风险基因和药物靶点。根据我们的初步结果,我们假设一个基因组-
广泛的多模式人工智能(AI)框架,可从人类识别新的风险基因和网络
基因组/外显子组测序和多组学发现使我们能够更全面地理解AD的发病机制
阿尔茨海默病的发病机制和靶向治疗干预发展迅速,取得了巨大成功。目标1
将通过全基因组/外显子组测序(WGS/WES)确定罕见的编码和非编码变体
利用基于序列和结构的深度技术在蛋白质功能和基因调控区获得丰富的蛋白质
学习模型。这些分析将汇集WGS/WES和阿尔茨海默病的临床数据
测序计划(ADSP),公开提供的蛋白质结构(即蛋白质-蛋白质界面、蛋白质-配基
结合位点、翻译后修饰)和序列(表达数量性状基因座[eQTL],
组蛋白-QTL和转录因子结合-QTL)信息来自PDB数据库、GTEx、NIH路线图、
FANTOM5、EPECENCODE和NIH4D基因组。目标2将确定Gwas是否存在常见的变种
与AD相关的病理生物学和内表型在细胞类型特异性的基因调控网络中是丰富的
使用贝叶斯框架的方式。我们将使用WGS/WES和
来自我们现有队列的蛋白质组表达数据:克利夫兰临床卢鲁沃脑健康中心
老龄化与神经退行性疾病生物库与克利夫兰阿尔茨海默病
研究中心(CADRC)。目标3将测试风险基因和网络可以通过
在硅胶药物再利用、基于群体的验证和功能测试中,以确定候选药物和药物
将修改AD的组合。该项目的成功完成将提供有能力和智慧的
基于计算机的工具箱,支持搜索、共享、可视化、查询和分析遗传学,
基因组学和多组学概况数据,用于AD和其他疾病的基因组知情治疗发现
如果广泛应用,神经退行性疾病。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Altered gene expression in excitatory neurons is associated with Alzheimer's disease and its higher incidence in women.
- DOI:10.1002/trc2.12373
- 发表时间:2023-01
- 期刊:
- 影响因子:4.8
- 作者:Garcia, A Xavier;Xu, Jielin;Cheng, Feixiong;Ruppin, Eytan;Schaffer, Alejandro A
- 通讯作者:Schaffer, Alejandro A
PDE5 inhibitor drugs for use in dementia.
- DOI:10.1002/trc2.12412
- 发表时间:2023-07
- 期刊:
- 影响因子:4.8
- 作者:Hainsworth, Atticus H;Arancio, Ottavio;Elahi, Fanny M;Isaacs, Jeremy D;Cheng, Feixiong
- 通讯作者:Cheng, Feixiong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lynn Bekris其他文献
Lynn Bekris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lynn Bekris', 18)}}的其他基金
Multimodal single-cell genomic and epigenomic analyses elucidate Alzheimer’s sexual dimorphism in human immune systems aging
多模式单细胞基因组和表观基因组分析阐明了人类免疫系统衰老中的阿尔茨海默氏症性别二态性
- 批准号:
10467465 - 财政年份:2021
- 资助金额:
$ 79.65万 - 项目类别:
Alzheimer's MultiOme Data Repurposing: Artificial Intelligence, Network Medicine, and Therapeutics Discovery
阿尔茨海默氏症多组数据再利用:人工智能、网络医学和治疗方法发现
- 批准号:
10276964 - 财政年份:2021
- 资助金额:
$ 79.65万 - 项目类别:
Alzheimer's MultiOme Data Repurposing: Artificial Intelligence, Network Medicine, and Therapeutics Discovery
阿尔茨海默氏症多组数据再利用:人工智能、网络医学和治疗方法发现
- 批准号:
10475133 - 财政年份:2021
- 资助金额:
$ 79.65万 - 项目类别:
Biomarker Expression and Regulatory Haplotypes in Alzheimer's Disease
阿尔茨海默氏病的生物标志物表达和调节单元型
- 批准号:
8849625 - 财政年份:2014
- 资助金额:
$ 79.65万 - 项目类别:
Biomarker Expression and Regulatory Haplotypes in Alzheimer's Disease
阿尔茨海默氏病的生物标志物表达和调节单元型
- 批准号:
8700271 - 财政年份:2014
- 资助金额:
$ 79.65万 - 项目类别:
Biomarker Expression and Regulatory Haplotypes in Alzheimer's Disease
阿尔茨海默氏病的生物标志物表达和调节单元型
- 批准号:
8527655 - 财政年份:2012
- 资助金额:
$ 79.65万 - 项目类别:
Biomarker Expression and Regulatory Haplotypes in Alzheimer's Disease
阿尔茨海默氏病的生物标志物表达和调节单元型
- 批准号:
8442059 - 财政年份:2012
- 资助金额:
$ 79.65万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 79.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 79.65万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 79.65万 - 项目类别:
Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 79.65万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 79.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 79.65万 - 项目类别:
Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 79.65万 - 项目类别:
Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 79.65万 - 项目类别:
Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
- 批准号:
23K20355 - 财政年份:2024
- 资助金额:
$ 79.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
- 批准号:
23K24782 - 财政年份:2024
- 资助金额:
$ 79.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)