Small Proteins and Epitranscriptomic Factors: Emerging Mechanisms in Bacterial Gene Regulation
小蛋白质和表观转录因子:细菌基因调控的新兴机制
基本信息
- 批准号:10700067
- 负责人:
- 金额:$ 39.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAmino AcidsAnabolismAntibioticsAntimicrobial ResistanceBacteriaBacterial GenesBiochemical PathwayBiologyCell SurvivalCell divisionCell physiologyEnvironmentEnzymesEscherichia coliEukaryotaFutureGene ExpressionGene Expression RegulationGenesGeneticGenetic TranscriptionGrowth and Development functionMass Spectrum AnalysisMeasuresMetabolismMethodsModificationMultiple Bacterial Drug ResistanceNucleoside QOpen Reading FramesPhosphotransferasesPhysiologyPlayProkaryotic CellsProteinsProteomicsRNARegulationRegulator GenesRegulatory PathwayResearchRoleSignal TransductionSiteStressSystemTextbooksTherapeuticTherapeutic InterventionTransfer RNATranslationsWorkantimicrobial peptideattenuationbiochemical toolsbiological adaptation to stresscrosslinkdesignepitranscriptomicsexperiencegene repressiongenome annotationin vivoinsightlink proteinnovelprogramsresponseribosome profilingsensorstressortherapeutically effectivetranscription factor
项目摘要
PROJECT SUMMARY
Bacteria use a diverse set of gene regulatory mechanisms to successfully adapt to ever-changing environments.
While some regulatory pathways for gene expression such as activation or repression by transcription factors,
and transcription/translation attenuation systems are well-characterized text-book examples, others are just
coming into prominence. My research program is focused on understanding two distinct bacterial gene regulatory
mechanisms: (i) small protein regulators, less than 50 amino acids long, and (ii) epitranscriptomic proteins that
link RNA modifications and translation to metabolism and stress response. Small proteins are directly encoded
by short open reading frames, which were missed in initial genome annotations due to the preset size cut-offs
for gene size. This group of proteins are increasingly shown to play significant roles in fundamental cellular
processes such as cell division, growth and development, modulation of transport and signaling. Despite the
advances in small protein discovery, there has been little progress in functional characterization of these new-
found proteins. To tackle the major challenge in this emerging field, Theme 1 will focus on the identification and
functional characterization of small proteins involved in bacterial stress responses. We will: (i) modify and
develop ribosome-profiling methods – Ribo-RET and Ribo-RET-PUR – to measure translation rates and identify
condition-specific small proteins, (ii) develop an in vivo site-specific photo-cross-linking and a proteomics-based
approach – SPICE-MS (Small Protein Interactions via Crosslinked Ensemble Mass Spectrometry) – tailored to
capture small protein targets. Based on my previous experience with elucidating the interactions between a small
protein MgrB and its target PhoQ sensor kinase, we will systematically characterize the functions of small
proteins and their associated targets identified here using genetic and biochemical tools. Functional and
mechanistic analyses of these small proteins will be useful in designing novel antibiotics and therapeutics. In
addition, the methods developed here will be broadly applicable to small proteins from other prokaryotes as well
as eukaryotes. In theme 2, we will focus on studying epitranscriptomic enzymes and their regulatory roles.
Specifically, we will investigate role of QueE – an enzyme involved in the biosynthesis of a ubiquitous RNA
modification called queuosine – in bacterial cell division during antimicrobial peptide stress. RNA modifications
and the related machinery are modulated in response to different cellular stressors, and little is known about how
this regulation affects cell physiology. We will investigate the mechanisms by which regulation of this tRNA
modification enzyme, QueE affects cell division, translation and metabolism during antimicrobial peptide stress
response in E. coli. Together, our work will advance the fields of small protein biology and epitranscriptomics by
(a) identifying and characterizing small proteins involved in stress responses, and (b) depicting how
epitranscriptomic enzymes act as nodes connecting translation to cellular metabolism and physiology,
respectively.
项目摘要
细菌使用一套不同的基因调控机制来成功地适应不断变化的环境。
而一些基因表达的调控途径如转录因子的激活或抑制,
和转录/翻译衰减系统是典型的教科书例子,其他的只是
变得突出。我的研究项目集中在了解两种不同的细菌基因调控
机制:(i)小蛋白调节剂,长度小于50个氨基酸,和(ii)表转录组蛋白,
将RNA修饰和翻译与新陈代谢和应激反应联系起来。小蛋白质直接编码
通过短的开放阅读框,由于预设的大小截止值,
基因大小这组蛋白质越来越多地显示出在基础细胞中发挥重要作用。
细胞分裂、生长和发育、运输和信号传导的调节等过程。尽管
尽管小蛋白质发现的进展,但这些新蛋白质的功能表征进展甚微,
发现蛋白质为了应对这一新兴领域的重大挑战,主题1将侧重于确定和
参与细菌应激反应的小蛋白的功能表征。我们将:(i)修改和
开发核糖体分析方法- Ribo-RET和Ribo-RET-PUR -以测量翻译速率并识别
条件特异性小蛋白,(ii)开发体内位点特异性光交联和基于蛋白质组学的
方法- SPICE-MS(通过交联包被质谱法的小蛋白相互作用)-专为
捕获小的蛋白质目标。根据我以前的经验,阐明了一个小的
蛋白质MgrB和它的目标PhoQ传感器激酶,我们将系统地表征小的功能,
蛋白质及其相关的目标确定这里使用遗传和生物化学工具。功能和
对这些小蛋白的机理分析将有助于设计新的抗生素和治疗剂。在
此外,本文所建立的方法也可广泛应用于其他原核生物的小分子蛋白质的研究
真核生物一样。主题二,我们将重点研究表转录组酶及其调控作用。
具体来说,我们将研究QueE的作用-一种参与普遍存在的RNA生物合成的酶
在抗菌肽应激过程中,细菌细胞分裂中的一种叫做肌苷的修饰。RNA修饰
以及相关的机制在不同的细胞应激源中被调节,
这种调节影响细胞生理学。我们将研究调节这种tRNA的机制,
QueE修饰酶在抗菌肽应激过程中影响细胞分裂、翻译和代谢
响应E.杆菌我们的工作将共同推进小蛋白生物学和表观转录组学领域,
(a)鉴定和表征参与应激反应的小蛋白,和(B)描述如何
表转录组酶作为连接翻译与细胞代谢和生理学的节点,
分别
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srujana Samhita Yadavalli其他文献
Srujana Samhita Yadavalli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srujana Samhita Yadavalli', 18)}}的其他基金
Small Proteins and Epitranscriptomic Factors: Emerging Mechanisms in Bacterial Gene Regulation
小蛋白质和表观转录因子:细菌基因调控的新兴机制
- 批准号:
10501172 - 财政年份:2022
- 资助金额:
$ 39.08万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 39.08万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 39.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 39.08万 - 项目类别:
Continuing Grant
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 39.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 39.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 39.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 39.08万 - 项目类别:
Studentship
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 39.08万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 39.08万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 39.08万 - 项目类别: