Role of glycosaminoglycans (GAGs) in deep vein thrombus formation and resolution
糖胺聚糖(GAG)在深静脉血栓形成和消退中的作用
基本信息
- 批准号:10700953
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-27 至 2026-07-26
- 项目状态:未结题
- 来源:
- 关键词:Academic Medical CentersAdhesionsAffectAgeAnimalsAntibodiesAnticoagulationBindingBinding SitesBiomedical EngineeringBloodBlood PlateletsBlood VesselsBlood flowCCL2 geneCD14 geneCardiovascular DiseasesCathetersCause of DeathCell CommunicationCell ProliferationChondroitin SulfatesCoagulation ProcessCommunicationComplete Blood CountDataDeep Vein ThrombosisDevelopmentDiseaseDoctor of PhilosophyEndothelial CellsEnzymesEtiologyExhibitsFactor XIFactor XIaFibrinFibrinolytic AgentsFlow CytometryFunctional disorderGenesGlycocalyxGlycoproteinsGlycosaminoglycan Degradation PathwayGlycosaminoglycansGoalsHealthHematologyHemostatic functionHeparin Cofactor IIHeparitin SulfateHyaluronanImpairmentIn VitroIncidenceInferior vena cava structureInfiltrationInflammationInflammatoryInflammatory InfiltrateInterleukin-1 betaInterleukin-13Intervention StudiesInvestigationLaboratoriesLeadershipMacrophageMagnetic Resonance ImagingMeasuresMediatorMembraneMentorshipModelingMusOperative Surgical ProceduresOregonPECAM1 genePathway interactionsPatientsPerfusionPermeabilityPersonsPhenotypePhysiciansPlatelet ActivationPlatelet-Derived Growth FactorPlayPostoperative PeriodPostphlebitic SyndromePrednisoneProcessProductivityProliferatingProteoglycanQuality of lifeRecurrenceResearch ProposalsResolutionRoleSalineScienceScientistSenior ScientistSigns and SymptomsSmooth Muscle MyocytesStainsSurfaceTNF geneTechniquesThrombinThrombophiliaThrombosisThrombusTrainingTransforming Growth Factor betaUniversitiesVasodilationVeinsVenousWeightcareercareer developmentcell injuryconstrictiondeep veindesigndisabilityferumoxytolglycosylationin vivoinjuredmonocytemonolayermouse modelneutrophiloptimal treatmentssham surgeryskillstherapeutic targetthrombolysisthromboticultrasoundvenous thromboembolism
项目摘要
PROJECT SUMMARY
Venous thromboembolism disorders represent the third most common cause of death from cardiovascular
disease. Despite the addition of catheter directed thrombolysis to standard anticoagulation therapy, recurrent
deep vein thrombosis (DVT) and subsequent post-thrombotic-syndrome (PTS), where the signs and symptoms
of DVT persist or worsen with thrombus resolution, still cause long term disability. Thus, a better understanding
of the basic mechanisms of DVT formation and resolution is needed.
In order for a DVT to form, endothelial cell (EC) injury must occur. Recently, the EC glycocalyx (eGCX), a
membrane bound mesh of glycoproteins, proteoglycans, and associated glycosaminoglycans (GAGs), has come
into focus as a multifunctional surface layer capable of regulating vasodilation, inflammation, proliferation, and
coagulation pathways. The 3 most prominent eGCX GAGs, heparan sulfate (HS), chondroitin sulfate (CS), and
hyaluronan (HA), have been associated with binding sites for anti-thrombin, heparin cofactor II, and non-
circulating factor XI (FXI). GAG binding of these critical coagulation components suggests an ambiguous
and currently unclarified role for GAGs in thrombus formation and resolution, warranting further
mechanistic investigation.
The goal of this proposal is to elucidate the mechanistic role by which the eGCX regulates DVT formation and
resolution. My hypothesis maintains that an injured eGCX will bolster DVT formation by increasing platelet-EC
interactions and activating the intrinsic clotting pathway, via release of non-circulating FXI. Furthermore, the
injured eGCX will impair DVT resolution by increasing inflammatory (M1) monocyte infiltration into the thrombus
and the vein wall. In Aim 1, I will determine the role of eGCX GAGs in platelet activation and thrombus formation
using a caval constriction DVT model in wildtype CD1 mice. In Aim 2, I will determine the role of eGCX GAGs
in causing post-thrombotic vein wall changes. This study will potentially identify relevant therapeutic targets that
directly affect DVT formation and resolution, paving the way for interventional studies and supporting the
rationale for the development of selective, safe, and effective antithrombotic agents. These studies will be
performed at Oregon's primary academic medical center, the Oregon Health and Science University in the
Departments of Biomedical Engineering and Vascular Surgery under the co-mentorship of Dr. Monica Hinds,
PhD and Dr. Khanh Nguyen, MD. The PI is supported by a mentorship team of senior scientists and physicians
with expertise in vascular pathophysiology, thrombosis, and vascular surgery. Career development activities
include training in mouse surgery, in vitro and in vivo analysis techniques, and coagulation and vascular
pathophysiology, as well as training in communication and leadership skills. This training is designed to support
the PI's career goals of becoming a physician-scientist with a long-term career goal of leading a productive and
translational vascular pathophysiology laboratory with a tightly integrated vascular surgery practice.
项目总结
静脉血栓栓塞症是心血管疾病的第三大常见死亡原因
疾病。尽管在标准的抗凝治疗中增加了导管定向溶栓治疗,但复发
深静脉血栓形成(DVT)和随后的血栓形成后综合征(PTS),其中的体征和症状
DVT的持续或恶化随着血栓的溶解,仍然会导致长期的残疾。因此,更好地理解
需要了解深静脉血栓形成和解决的基本机制。
为了形成深静脉血栓,必须发生内皮细胞(EC)损伤。最近,ECGCX,一种
糖蛋白、蛋白多糖和相关的糖胺聚糖(GAG)的膜结合网状物已经出现
作为一种多功能表层,能够调节血管扩张、炎症、增殖和
凝血途径。3个最突出的eGCX GAG,硫酸乙酰肝素(HS),硫酸软骨素(CS),以及
透明质酸(HA)与抗凝血酶、肝素辅因子II和非凝血酶的结合部位有关。
循环系数XI(FXI)。这些关键凝血成分的GAG结合表明
目前,GAG在血栓形成和溶解中的作用尚不清楚,因此有必要进一步
机械调查。
这项建议的目的是阐明eGCX调节DVT形成和
决议。我的假设是,受损的eGCX将通过增加血小板-EC来促进DVT的形成
相互作用,并通过释放非循环FXI激活内在凝血途径。此外,
受损的eGCX将通过增加炎性(M1)单核细胞对血栓的渗透而损害DVT的分辨率
和静脉壁。在目标1中,我将确定eGCX GAG在血小板激活和血栓形成中的作用
在野生型CD1小鼠中建立下腔静脉缩窄DVT模型。在目标2中,我将确定eGCX GAG的角色
导致血栓形成后静脉壁的改变。这项研究可能会确定相关的治疗靶点
直接影响DVT的形成和解决,为介入研究铺平道路,并支持
开发选择性、安全和有效的抗血栓药物的基本原理。这些研究将是
在俄勒冈州的主要学术医疗中心,俄勒冈健康与科学大学表演
在Monica Hinds博士的共同指导下,生物医学工程和血管外科系,
博士和Khanh Nguyen博士,医学博士PI由一个由资深科学家和医生组成的指导团队提供支持
具有血管病理生理学、血栓形成和血管外科方面的专业知识。职业发展活动
包括小鼠手术、体外和体内分析技术以及凝血和血管方面培训
病理生理学,以及沟通和领导技能的培训。本培训旨在支持
PI的职业目标是成为一名内科科学家,长期的职业目标是领导一个富有成效和
翻译血管病理生理学实验室与紧密结合的血管外科实践。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rick Mathews其他文献
Rick Mathews的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rick Mathews', 18)}}的其他基金
Role of glycosaminoglycans (GAGs) in deep vein thrombus formation and resolution
糖胺聚糖(GAG)在深静脉血栓形成和消退中的作用
- 批准号:
10463067 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:














{{item.name}}会员




