Multiethnic machine learning brain signatures of ADRD
ADRD 的多种族机器学习大脑特征
基本信息
- 批准号:10693310
- 负责人:
- 金额:$ 70.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdultAffectAgeAgingAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer&aposs disease pathologyAlzheimer&aposs disease related dementiaAlzheimer’s disease biomarkerAmyloid beta-42Atherosclerosis Risk in CommunitiesAtrophicAttenuatedBiologicalBiological MarkersBlack AmericanBlack PopulationsBloodBrainBrain imagingCHI3L1 geneCaringCerebrovascular TraumaClinicalCognitionCohort StudiesCommunitiesComputer softwareDataData SetDementiaDevelopmentDiabetes MellitusDimensionsDiseaseDisparityDyslipidemiasEthnic OriginEthnic PopulationExposure toFramingham Heart StudyFunctional Magnetic Resonance ImagingFundingFutureGeneticGlial Fibrillary Acidic ProteinHealth Care CostsHeartHeterogeneityHispanic AmericansHispanic PopulationsHypertensionImpaired cognitionIncidenceIndividualInsulin ResistanceInterventionIntervention TrialKnowledgeLightLongevityLongitudinal cohortMachine LearningMagnetic Resonance ImagingMedicalMetabolic syndromeMicrovascular DysfunctionMorbidity - disease rateMulti-Ethnic Study of AtherosclerosisNeuroanatomyNeurodegenerative DisordersNot Hispanic or LatinoObesityOnset of illnessParticipantPathogenesisPathologic ProcessesPathway interactionsPatternPopulationPreventiveRaceResearchRestSmokingStage at DiagnosisStructureTrainingUnited StatesUnited States National Institutes of HealthValidationadvanced analyticsaging brainaging demographicaging demographyaging populationanalytical methodbiomarker validationblood-based biomarkerbrain basedcardiovascular healthcardiovascular risk factorclinical diagnosisclinically relevantcognitive functioncohortcomorbiditydementia riskdisorder riskethnic differenceethnic diversityethnic minorityethnoracialfunctional declinegenomic epidemiologyhealth disparityhigh dimensionalitylifestyle datamachine learning algorithmmachine learning methodmachine learning modelmachine learning predictionmild cognitive impairmentmortalitymulti-ethnicmultimodal neuroimagingneurofilamentneuroimagingneuroimaging markernovelpre-clinicalpredictive signaturepublic health prioritiesracial differenceracial diversityracial minorityracial populationsexsocioeconomicstau-1therapy developmenttrendvascular cognitive impairment and dementiavascular risk factor
项目摘要
PROJECT SUMMARY / ABSTRACT
The underlying pathology of Alzheimer's disease and related dementias (ADRDs) accumulates gradually over
decades, making the identification of non-invasive, sensitive biomarkers in the preclinical stage a critical public
health priority. Harnessing advanced analytic methods, our team and others have established neuroimaging
signatures of advanced brain aging (Spatial Pattern of Atrophy Recognition of Brain Aging, SPARE-BA) and
functional decline (fSPARE-BA), and ADRDs (SPARE-AD and SPARE-Small vessel disease), which predict
incident cognitive decline. Unfortunately, most research to date has been conducted in predominantly non-
Hispanic white populations, which limits the ability to generalize results to the diverse ethnoracial makeup of the
United States' growing aging demographic. If current trends continue, machine learning models will primarily be
trained in ethnically imbalanced datasets, leading to biases that may affect clinical relevance. Thus, the primary
aims of the current proposal are to: leverage an ethnically diverse neuroimaging consortium to build new machine
learning models trained by data from ethnically well-balanced populations, derive sensitive and specific
neuroimaging signatures of brain aging and ADRD, and evaluate whether they can be practical non-invasive
biomarkers of incident cognitive decline, mild cognitive impairment (MCI), and dementia across ethnoracial
groups. We propose to leverage the rich clinical and neuroimaging (structural MRI and resting-state functional
MRI) data within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium,
including the Atherosclerosis Risk in Communities Study (ARIC), the Cardiovascular Health Study (CHS), the
Genetics of Brain Structure and Function Study (GOBS), the Framingham Heart Study (FHS), the Vascular
Contributions to Cognitive Impairment and Dementia consortium (MARK-VCID) and the Multi-Ethnic Study of
Atherosclerosis (MESA). We will leverage a collaborative research framework across existing longitudinal
cohorts to address unanswered questions contributing to disparities in ADRD burden. Machine learning
algorithms will be applied to brain imaging data of over 7,200 non-Hispanic Whites, 1,400 Blacks, and 1,425
Hispanics to address our Specific Aims: 1) Generate and evaluate clinical utility of machine learning-based
signatures of brain aging and ADRD for each race/ethnic group and uncover multidimensional heterogeneity in
aging across groups; 2) Examine associations of vascular risk factors with the derived machine learning-based
brain signatures of ADRD by race/ethnicity, and 3) Explore blood-based biomarker predictors of these machine
learning-based brain signatures by ethnoracial group to elucidate underlying biological mechanisms. Further, we
will share our robust machine learning models together with implementation software with the scientific
community. This project will develop and validate neuroimaging markers with robust predictive utility for incident
cognitive decline and to identify underlying pathophysiologic pathways, expanding opportunities for novel
intervention development across diverse ethnoracial cohorts.
ii
项目摘要/摘要
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohamad Habes其他文献
Mohamad Habes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohamad Habes', 18)}}的其他基金
Multiethnic machine learning brain signatures of ADRD
ADRD 的多种族机器学习大脑特征
- 批准号:
10524844 - 财政年份:2022
- 资助金额:
$ 70.62万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 70.62万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 70.62万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 70.62万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 70.62万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 70.62万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 70.62万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 70.62万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 70.62万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 70.62万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 70.62万 - 项目类别:
Research Grant














{{item.name}}会员




