PLASTICITY OF CORTICAL ENSEMBLE CONNECTIVITY IN VISUAL LEARNING
视觉学习中皮质整体连接的可塑性
基本信息
- 批准号:10693279
- 负责人:
- 金额:$ 7.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2024-09-15
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAmblyopiaBehaviorBlindnessBrainCalciumCellsChronicCompensationDataDiscriminationDiseaseEconomicsElectrodesElectrophysiology (science)ExhibitsHolographyHumanImageIn VitroIndividualInterventionLeadLearningLinkMapsMeasuresMethodologyModalityMotionMusNeocortexNeuronsNeurophysiology - biologic functionOcular ProsthesisOpticsPatternPopulationPropertyProsthesisReproducibilityRewardsRoboticsSensoryStimulusStructureStructure-Activity RelationshipSynapsesSynaptic plasticityTechniquesTechnologyTestingTimeVisionVision DisordersVisualVisual CortexVisual PerceptionVisual SystemVocabularyWorkarea striataeffective therapyin vivoneocorticalneuralnovel therapeuticsoptogeneticspatch clamppostsynapticpresynapticresponsesensory inputspatiotemporaltooltwo-photonvision developmentvisual informationvisual learningvisual processvisual processingvisual stimulus
项目摘要
Vision is a critical sensory modality that we depend on to navigate through the world and understand our
surroundings. Disorders of the visual system lead to severe interpersonal deficits and to economic
immiseration. Although much progress has been made describing the cellular basis of visual perception,
little is known about the connectivity of brain circuits that process visual information, and even less is
known about how this connectivity changes over time. I propose to leverage cutting-edge robotic and
optical technologies to clarify how neuronal ensembles (coactive groups of cells) are connected in the
primary visual cortex (V1), the neocortical region where visual perception arises. Ensembles in V1 exhibit
activity patterns with reproducible spatial and temporal structures which define the functional vocabulary
of cortical microcircuits. It has been recently shown that the activation of ensembles is necessary and
sufficient for visual perception. The Hebbian hypothesis suggests that neurons that are repeatedly
coactive over time (ensembles) are likely to be more strongly synaptically connected to one another than
to neurons outside of the ensemble. I will develop a high-throughput tool to test this Hebbian hypothesis
of preferential synaptic connectivity within ensembles using robotic electrophysiology and holographic
optogenetic stimulation (Aim 1). I will then describe the functional and structural changes of cortical
microcircuits during visual learning using chronic two-photon calcium imaging of neurons in the mouse
visual cortex, in relation to the Hebbian hypothesis of synaptic plasticity and learning (Aim 2). Successful
completion the current project will establish a structural link between ensemble activity and the activity of
the brain during visual learning, yielding inroads towards a more complete understanding of visual
processing, a prerequisite to addressing the dearth of effective treatment options for blindness.
视觉是一种重要的感官形式,我们依靠它来浏览世界并了解我们的生活。
四周视觉系统障碍导致严重的人际交往障碍和经济困难。
不幸虽然在描述视觉的细胞基础方面已经取得了很大进展,
人们对处理视觉信息的大脑回路的连通性知之甚少,
我们知道这种连通性是如何随时间变化的。我建议利用尖端的机器人和
光学技术,以澄清神经元集合(细胞的共同活动组)是如何连接在
初级视觉皮层(V1),即产生视觉感知的新皮层区域。V1展览中的合奏
活动模式与可再现的空间和时间结构,定义功能词汇
大脑皮层微电路最近的研究表明,合奏的激活是必要的,
足够的视觉感知。赫布假说认为,神经元,
随着时间的推移,相互作用(集合)可能比彼此之间的突触连接更强烈
到群体之外的神经元。我将开发一个高通量的工具来测试这个赫布假说
使用机器人电生理学和全息技术,
光遗传学刺激(Aim 1)。然后,我将描述皮层的功能和结构变化,
用慢性双光子钙离子成像研究小鼠视觉学习过程中的微电路
视觉皮质,与突触可塑性和学习的赫布假说有关(目的2)。成功
完成目前的项目将建立一个整体活动和活动之间的结构联系,
大脑在视觉学习过程中,产生对视觉更完整的理解的进展
这是解决失明有效治疗方案缺乏问题的先决条件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Andrew Stoy其他文献
William Andrew Stoy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Andrew Stoy', 18)}}的其他基金
PLASTICITY OF CORTICAL ENSEMBLE CONNECTIVITY IN VISUAL LEARNING
视觉学习中皮质整体连接的可塑性
- 批准号:
10313069 - 财政年份:2021
- 资助金额:
$ 7.38万 - 项目类别:
PLASTICITY OF CORTICAL ENSEMBLE CONNECTIVITY IN VISUAL LEARNING
视觉学习中皮质整体连接的可塑性
- 批准号:
10490276 - 财政年份:2021
- 资助金额:
$ 7.38万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 7.38万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 7.38万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 7.38万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 7.38万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 7.38万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 7.38万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 7.38万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 7.38万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 7.38万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 7.38万 - 项目类别:
Continuing Grant