A novel force spectroscopy to study the ribosome power strokes and frameshifting
用于研究核糖体动力冲程和移码的新型力谱
基本信息
- 批准号:10693913
- 负责人:
- 金额:$ 29.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAffectAmino AcidsAntibiotic ResistanceAntibioticsBindingBiological AssayCAG repeatCardiovascular DiseasesCellsChildCodon NucleotidesComplementCongenital EpilepsyDNA Tumor VirusesDegenerative DisorderDetectionDiseaseDrug TargetingElongation FactorEpilepsyExonsFundingG-QuartetsGTP BindingGenerationsGrantGuanosine TriphosphateHealthHomologous GeneHumanHuntington DiseaseHuntington geneIntellectual functioning disabilityKineticsKnowledgeLegal patentLocationMaintenanceMalignant NeoplasmsManuscriptsMeasurementMeasuresMessenger RNAMethodsModelingModificationMovementMuscleMutationNeuronsNucleotidesOutcomePaperPeptide Elongation Factor GPeptidesPhasePhosphorylationPhosphotransferasesPlayPositioning AttributePower strokeProcessProtein BiosynthesisRNARadiationReading FramesRegulationResearchResistanceResolutionRibosomal RNARibosomesRoleSamplingSchemeSideSpectrum AnalysisStructureTechniquesTimeTransfer RNATranslational RegulationTranslationsVirus Diseasesbasebiophysical toolsdesigndisease-causing mutationhuman diseaseimprovedinsightmechanical forcemultiplex detectionmutantnew technologynew therapeutic targetnovelsensortherapeutic targettranslocaseultra high resolution
项目摘要
Dynamic and correct protein synthesis by the ribosome is essential to cell’s normal function, especially in muscle
and neuron cells. The intricate ribosome internal structure and elongation factors achieve fast and faithful peptide
elongation cycles at the expenses of GTP energy. However, mechanism and cellular level regulations of this
process in healthy and diseased cells are still not clear. For example, elongation errors due to amino acid
misincorporation and frameshifting are the fundamental causes for neuron degenerative diseases,
cardiovascular diseases, cancer, and viral infections. Regulation of the human ribosome translocase eEF2 via
phosphorylation is the only known normal functional modification, making the eEF2 kinase an extremely popular
drug target. However, how this modification affects the translocation is unclear. Similarly, mutations in eEF1, the
other elongation factor, causes congenital epilepsy and intellectual disability with unclear mechanism. In addition,
dynamic RNA modifications are connected with translation regulation and antibiotic resistance. We will tackle
these problems with super-resolution force spectroscopy (SURFS) that can directly measure the ribosome
toeprinting on the mRNA at both sides flanking the ribosome, and reveal the mechanical force’s role in this
movement. The outcome of this proposal is to prove the hypothesis of ribosome’s “inchworm-like” translocation
model that was proposed during the first supporting period. It will fill the current knowledge gap regarding
mechanical force’s role in translocation fidelity, reveal new therapeutic targets for related diseases, and generate
a new tool for biophysical research. Our research is unique because force in ribosome translation is only recently
confirmed and its mechanistic role is largely unknown. To our best knowledge, FIRMS and SURFS are the only
approaches that can probe both force and movement of ribosome. The aims are: 1) reveal the relationship
among power stroke, frameshifting, and kinetics using disease-causing mutations in elongation factors. EF-G
and EF-Tu’s mutations at the GTP binding pocket and EF-G’s domain IV loops interacting with tRNA are the
subjects. 2) investigate the roles of mRNA modifications, codon repeats, and antibiotics in translocation. Among
the 27 mRNA residues covered inside the ribosome, specific locations interact with the rRNAs to serve as the
brakes for reading frame maintenance. Modifications and antibiotic bindings at these locations are the focus in
this aim. In addition, how G-quadruplexes of repeating mRNA sequences induce frameshifting and alter the
kinetics will be revealed. 3) develop multiplex time-resolved SURFS. During the previous funding period, we
developed force-induced remnant magnetization spectroscopy (FIRMS) to resolve different reading frames and
determine the power strokes of EF-G and its modifications. Toward the end of the first funding period, SURFS
technique was developed that integrated acoustic radiation force with FIRMS to achieve five-fold better force
resolution. In this aim, SURFS will enable automatic multiplexed measurement with time-resolution. Therefore,
we will advance this technique with more efficient and precise measurements for force and translocation steps.
核糖体动态且正确的蛋白质合成对于细胞的正常功能至关重要,尤其是在肌肉中
和神经元细胞。复杂的核糖体内部结构和延伸因子实现快速、忠实的肽
以 GTP 能量为代价的伸长周期。然而,这种机制和细胞水平的调节
健康细胞和患病细胞中的这一过程仍不清楚。例如,由于氨基酸导致的伸长误差
错误掺入和移码是神经元退行性疾病的根本原因,
心血管疾病、癌症和病毒感染。人核糖体转位酶 eEF2 的调节
磷酸化是唯一已知的正常功能修饰,使得 eEF2 激酶成为非常受欢迎的
药物靶点。然而,这种修饰如何影响易位尚不清楚。同样,eEF1 的突变
其他伸长因素,导致先天性癫痫和智力障碍,但机制尚不清楚。此外,
动态 RNA 修饰与翻译调节和抗生素耐药性有关。我们将解决
可以直接测量核糖体的超分辨率力谱(SURFS)解决这些问题
核糖体两侧 mRNA 上的脚趾印记,揭示了机械力在此过程中的作用
移动。该提案的结果是证明核糖体“类似尺蠖”易位的假设
在第一个支持期间提出的模型。它将填补目前的知识空白
机械力在易位保真度中的作用,揭示相关疾病的新治疗靶点,并产生
生物物理研究的新工具。我们的研究是独一无二的,因为核糖体翻译力最近才出现
已得到证实,但其机制作用在很大程度上尚不清楚。据我们所知,FIRMS 和 SURFS 是唯一
可以探测核糖体的力和运动的方法。目的是:1)揭示关系
在动力冲程、移码和动力学中使用伸长因子中的致病突变。 EF-G
EF-Tu 在 GTP 结合口袋处的突变以及 EF-G 与 tRNA 相互作用的结构域 IV 环是
科目。 2) 研究 mRNA 修饰、密码子重复和抗生素在易位中的作用。之中
核糖体内覆盖的 27 个 mRNA 残基,特定位置与 rRNA 相互作用,作为
用于阅读架维护的制动器。这些位置的修饰和抗生素结合是重点
这个目标。此外,重复 mRNA 序列的 G 四链体如何诱导移码并改变
动力学将被揭示。 3)开发多重时间分辨SURFS。在上一个资助期间,我们
开发了力诱导剩磁光谱(FIRMS)来解析不同的阅读框架和
确定 EF-G 及其改进型的动力冲程。在第一个资助期结束时,SURFS
开发了将声辐射力与 FIRMS 相结合的技术,以实现五倍更好的力
解决。为此,SURFS 将实现具有时间分辨率的自动多路测量。所以,
我们将通过更有效、更精确地测量力和易位步骤来推进这项技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YUHONG WANG其他文献
YUHONG WANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YUHONG WANG', 18)}}的其他基金
A novel force spectroscopy to study the ribosome power stroke and frameshifting
研究核糖体动力冲程和移码的新型力谱
- 批准号:
9134165 - 财政年份:2015
- 资助金额:
$ 29.45万 - 项目类别:
A novel force spectroscopy to study the ribosome power strokes and frameshifting
用于研究核糖体动力冲程和移码的新型力谱
- 批准号:
10210078 - 财政年份:2015
- 资助金额:
$ 29.45万 - 项目类别:
A novel force spectroscopy to study the ribosome power strokes and frameshifting
用于研究核糖体动力冲程和移码的新型力谱
- 批准号:
10828642 - 财政年份:2015
- 资助金额:
$ 29.45万 - 项目类别:
A novel force spectroscopy to study the ribosome power strokes and frameshifting
用于研究核糖体动力冲程和移码的新型力谱
- 批准号:
10469409 - 财政年份:2015
- 资助金额:
$ 29.45万 - 项目类别:
Single Molecule FRET Study of Ribosome Translocation
核糖体易位的单分子 FRET 研究
- 批准号:
7158670 - 财政年份:2006
- 资助金额:
$ 29.45万 - 项目类别:
Single Molecule FRET Study of Ribosome Translocation
核糖体易位的单分子 FRET 研究
- 批准号:
7278176 - 财政年份:2006
- 资助金额:
$ 29.45万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 29.45万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 29.45万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 29.45万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 29.45万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 29.45万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 29.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 29.45万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 29.45万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 29.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 29.45万 - 项目类别:
Studentship














{{item.name}}会员




