Dynamic Interactions between Intrinsically Disordered Proteins and Curved Membrane Surfaces

本质无序蛋白质与弯曲膜表面之间的动态相互作用

基本信息

  • 批准号:
    10708024
  • 负责人:
  • 金额:
    $ 39.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-22 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract. Intrinsically Disordered Proteins (IDPs) represent approximately 40% of the human proteome and are implicated in a large number of human diseases, including neurological disorders and cancer. Therefore, the biological relevance of IDPs has garnered substantial interest over the last decade. IDPs often interact with curved membranes to form structures that are essential to cellular physiology, such as synaptic and endocytic vesicles. These interactions are facilitated by membrane curvature sensing. The PI recently discovered that IDPs are potent sensors of membrane curvature. This discovery is a substantive departure from the predominant structure-function paradigm, as IDPs lack fixed three-dimensional structure and are often incorrectly assumed to also lack biophysical functionality. The curvature sensitivity of IDPs, as well as many other types of proteins, is normally studied at thermodynamic equilibrium. However, membrane-interacting proteins exist in a dynamic equilibrium between their membrane-bound and membrane-unbound states. It can take minutes to achieve thermodynamic equilibrium between proteins and membranes, but cellular processes, such as cell signaling, occur anywhere between milliseconds to seconds. It is clear from this mismatch in timescales that when thermodynamic equilibrium alone is considered, dynamic information that is pertinent to the timescale of cellular processes is omitted. Little to no literature exists that examines this phenomenon, likely owing to the difficulty associated with achieving such experimental measurements. Thus, dynamic interactions between proteins and curved membrane structures are poorly understood. Using their expertise in quantitative fluorescence microscopy and protein engineering, the goal of the PI's laboratory is to develop and apply techniques and strategies that will allow for direct visualization and characterization of dynamic interactions between IDPs and curved membrane structures. The PI's future research program contains 3 overarching research projects. Work in Project 1 will evaluate the extent to which protein structure influences adsorption and desorption kinetics, testing the working hypothesis that curved membranes affect various protein structures differently. Work in Project 2 will evaluate the impact of protein networks on the binding dynamics of IDPs, answering questions about the influence of protein multivalency on dynamic behavior. Work in Project 3 will develop experimental techniques and strategies that mimic the intracellular environment, answering questions about dynamic interactions between IDPs and curved membrane substrates that occur in the presence of two- dimensional, phase separated protein mixtures on the membrane surface or three-dimensional protein aggregates in the bulk solution. As previously mentioned, our current understanding of the interactions between proteins and curved membranes was derived from systems in which the partitioning of proteins was measured after thermodynamic equilibrium was achieved. In contrast, the proposed work will fill a key gap in existing knowledge by directly observing and quantifying dynamic interactions between proteins and curved membranes.
项目摘要/摘要。固有无序蛋白(IDPs)约占人类的40% 蛋白质组,并与许多人类疾病有关,包括神经疾病和癌症。 因此,在过去十年中,国内流离失所者的生物学相关性引起了人们的极大兴趣。国内流离失所者经常 与弯曲的膜相互作用,形成细胞生理所必需的结构,如突触和 内吞小泡。这些相互作用是由膜曲率传感促进的。少年派最近发现 IDPs是膜曲率的有效传感器。这一发现实质上背离了 主要的结构-功能范式,因为国内流离失所者缺乏固定的三维结构,而且往往是错误的 推测也缺乏生物物理功能。国内流离失所者的曲率敏感性,以及许多其他类型的 蛋白质,通常是在热力学平衡条件下研究的。然而,膜相互作用的蛋白质存在于 它们的膜结合状态和膜非结合状态之间的动态平衡。可能需要几分钟的时间 实现蛋白质和膜之间的热力学平衡,但细胞过程,如细胞 信令,发生在毫秒到秒之间的任何地方。从时间尺度上的这种不匹配可以清楚地看到 当仅考虑热力学平衡时,与时间尺度有关的动态信息 细胞过程被省略了。很少或根本没有文献研究这种现象,可能是因为 与实现这种实验测量相关的困难。因此,动态交互作用在 蛋白质和弯曲的膜结构知之甚少。利用他们在量化方面的专业知识 荧光显微镜和蛋白质工程,PI实验室的目标是开发和应用 允许直接可视化和描述动态交互的技术和策略 在国内流离失所者和弯曲的膜结构之间。国际和平研究所未来的研究计划包括3个主要方面 研究项目。项目1中的工作将评估蛋白质结构影响吸附和 解吸动力学,测试弯曲膜影响各种蛋白质结构的工作假说 不同的。项目2将评估蛋白质网络对国内流离失所者结合动态的影响, 回答有关蛋白质多价态对动态行为的影响的问题。在项目3中工作将 开发模拟细胞内环境的实验技术和策略,回答问题 关于IDPs与弯曲的膜基质之间的动态相互作用,在两种- 膜表面的三维、相分离的蛋白质混合物或三维蛋白质 散装解决方案中的聚集体。正如前面提到的,我们目前对相互作用的理解是 蛋白质和弯曲的膜来自测量蛋白质分配的体系。 在达到热力学平衡后。相比之下,拟议的工作将填补现有工作的一个关键空白 通过直接观察和量化蛋白质和弯曲的膜之间的动态相互作用来获得知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wade F Zeno其他文献

Wade F Zeno的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wade F Zeno', 18)}}的其他基金

Dynamic Interactions between Intrinsically Disordered Proteins and Curved Membrane Surfaces
本质无序蛋白质与弯曲膜表面之间的动态相互作用
  • 批准号:
    10502133
  • 财政年份:
    2022
  • 资助金额:
    $ 39.44万
  • 项目类别:
Intrinsically Disordered Proteins as Sensors of Membrane Curvature
本质上无序的蛋白质作为膜曲率的传感器
  • 批准号:
    9788761
  • 财政年份:
    2018
  • 资助金额:
    $ 39.44万
  • 项目类别:

相似海外基金

Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
  • 批准号:
    2901619
  • 财政年份:
    2024
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
  • 批准号:
    EP/W027593/2
  • 财政年份:
    2024
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
  • 批准号:
    24K17729
  • 财政年份:
    2024
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
  • 批准号:
    2871817
  • 财政年份:
    2024
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
  • 批准号:
    2903366
  • 财政年份:
    2024
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Studentship
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
  • 批准号:
    2312325
  • 财政年份:
    2023
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Standard Grant
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
  • 批准号:
    23H02303
  • 财政年份:
    2023
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
  • 批准号:
    23KJ0192
  • 财政年份:
    2023
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Reflection and adsorption of low energy hydrogen on solid surface
低能氢在固体表面的反射与吸附
  • 批准号:
    23H01158
  • 财政年份:
    2023
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
  • 批准号:
    2303933
  • 财政年份:
    2023
  • 资助金额:
    $ 39.44万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了