SSCIMA: Integrating Analysis of Socio-economic Sub-population Dynamics to Improve Spatial Models of Infectious Disease

SSCIMA:整合社会经济亚群动态分析以改进传染病的空间模型

基本信息

  • 批准号:
    10707497
  • 负责人:
  • 金额:
    $ 35.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-20 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY The striking disparities in disease dynamics and health outcomes between various socio-demographic groups observed during the SARS-CoV-2 pandemic have highlighted the critical need for improved modeling approaches that help us understand and predict such disparities. Most modeling studies currently produce insights at spatial scales that are too coarse (e.g., counties, states) in scale, and are usually insensitive to local socio-demographic variations in disease dynamics; this limits their practical value for informing public health planning in local communities. What is needed is a set of standardized methods to efficiently create fine- grained models capable of exposing and capturing key spatial features and socio-demographic factors that impact transmission dynamics and disease outcomes, and that can reveal how different socio-demographic sub-groups may experience disparate disease outcomes. Here we propose a novel SSCIMA (Social-Spatial Clustering, Interconnection, and Movement Analysis) modeling approach to efficiently expose linkages between local mobility, socio-demographic composition, and evolving disease surveillance and to optimize the construction of meta-population disease models that can make more accurate disease forecasts at the scales of census blocks (i.e., local neighborhoods). We will use SARS-CoV-2 and simulated data sets to drive the design and rigorous testing of generalized methods and software that will be useful for future pandemic preparedness. In Aim 1, we develop statistical methods that ingest disease data, mobility patterns, and socio- demographic statistics at the scale of census blocks and use these data to determine the features that most strongly explain patterns of local and regional transmission dynamics as well as disease outcomes (e.g., hospitalization rates). In Aim 2, we develop efficient methods leveraging the linkages revealed under Aim 1 to fit meta-population models to sparse data at the scale of census blocks, integrating mobility data, and socio- demographic features to yield high-fidelity meta-population models structured directly based on evolving observed patterns of disease dynamics. Analyses driven by simulated and real data will reveal the potential for SSCIMA-driven configuration of meta-population models to improve local forecast accuracy; and we will also produce freely available software and a cloud-based modeling portal to allow exploration and testing of our method and tools. In Aim 3, we will focus on dissemination and education, developing a new educational module for deployment within SHERC’s existing outreach infrastructure, as well as a half-day training workshop for the modeling community to learn about, engage with, and provide feedback on our technique and tools. We expect the SCCIMA approach to enable more rapid, spatially refined, and equity-focused modeling efforts that will better equip us for future epidemic events.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Mihaljevic其他文献

Joseph Mihaljevic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Mihaljevic', 18)}}的其他基金

EpiMoRPH: A simulation environment for generating spatially-refined intervention strategies for the control of infectious disease
EpiMoRPH:用于生成控制传染病的空间精细干预策略的模拟环境
  • 批准号:
    10599966
  • 财政年份:
    2022
  • 资助金额:
    $ 35.23万
  • 项目类别:
EpiMoRPH: A simulation environment for generating spatially-refined intervention strategies for the control of infectious disease
EpiMoRPH:用于生成控制传染病的空间精细干预策略的模拟环境
  • 批准号:
    10412872
  • 财政年份:
    2022
  • 资助金额:
    $ 35.23万
  • 项目类别:
SSCIMA: Integrating Analysis of Socio-economic Sub-population Dynamics to Improve Spatial Models of Infectious Disease
SSCIMA:整合社会经济亚群动态分析以改进传染病的空间模型
  • 批准号:
    10555414
  • 财政年份:
    2017
  • 资助金额:
    $ 35.23万
  • 项目类别:

相似海外基金

SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 35.23万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 35.23万
  • 项目类别:
    Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
  • 批准号:
    NE/Y000080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.23万
  • 项目类别:
    Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
  • 批准号:
    10112700
  • 财政年份:
    2024
  • 资助金额:
    $ 35.23万
  • 项目类别:
    Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 35.23万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 35.23万
  • 项目类别:
    Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 35.23万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 35.23万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 35.23万
  • 项目类别:
    Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
  • 批准号:
    2307983
  • 财政年份:
    2023
  • 资助金额:
    $ 35.23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了