Advanced Nucleation Technologies for Membrane Protein Crystallization to Accelerate Structure-Based Drug Design for Substance Use Disorders
先进的膜蛋白结晶成核技术可加速针对药物滥用疾病的基于结构的药物设计
基本信息
- 批准号:10707123
- 负责人:
- 金额:$ 71.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAdvanced DevelopmentBenchmarkingBindingBinding SitesBiological ProcessCharacteristicsChemicalsComplementCrystallizationCrystallographyDataDetergentsDiseaseDropsDrug DesignEngineeringEnsureGoalsHealth BenefitHumanHybridsHydrophobicityHydroquinonesIslandKnowledge acquisitionLegal patentLightLocationMarketingMembrane ProteinsMethodsModificationMolecular ConformationNational Institute of Drug AbuseOutcomePeripheralPharmaceutical PreparationsPharmacologic SubstancePhaseProductivityProteinsProteomePublic HealthReproducibilityResearch PersonnelResolutionScienceSignal TransductionSolubilitySourceStructureSubstance Use DisorderSuccinate DehydrogenaseSuccinate dehydrogenase (ubiquinone)SurfaceSynchrotronsSystems DevelopmentTechnologyTemperatureUnited States National Institutes of HealthUniversitiesX ray diffraction analysiscommercial applicationdrug developmentflexibilityhigh throughput screeninghydrophilicityimprovedinnovationmetermonolayerprototypepublic health researchquinol fumarate reductaseresponsescreeningself assemblystructural biologysurfactantsynchrotron radiationtechnological innovationtherapeutic target
项目摘要
PROJECT SUMMARY
DeNovX creates innovative platform products that improve the crystallization of proteins and pharmaceuticals.
Of the ≈ 4700 human membrane proteins potentially involved in drug responses, ≈ 94% have yet to be
structurally characterized owing to difficulties in crystallization. The goal of Phase II is to adapt DeNovX’s
surface science agnostic approach to improving crystallization for use with membrane proteins to advance the
structure-based understanding of substance use disorders (SUDs) to benefit Public Health. DeNovX improves
crystallization using tunable substrates based on chemical interactions from bifunctional self-assembled
monolayers (SAMs); surface energy modifications from engineered nucleation features (ENFs); and a hybrid
strategy using chemically and energy modified ENFs (CENFs). A high confidence POC was achieved using the
membrane proteins quinol:fumarate reductase (QFR) and succinate:quinone oxidoreductase (SQR). Diffraction
quality QFR crystals were formed on a bifunctional SAM while no crystals formed on controls, and select ENFs
produced up to a 19-fold increase in QFR crystals vs. controls. The hypothesis is that bifunctional SAMs,
ENFs, or hybrid CENFs interacting with a membrane protein or its detergent envelope can facilitate
preorganization and crystal nucleation from supersaturated solutions. Specific Aim 1 - Conduct controlled,
replicate (n ≥ 6) studies of membrane protein crystallization outcomes using β-prototype bifunctional SAMs,
ENFs, and CENFs to identify those characteristics most favorably impacting crystal nucleation of the QFR and
SQR benchmark membrane proteins provided by Co-I Iverson under a subaward to Vanderbilt. These rigorous
and quantitative crystallization studies will be complemented with synchrotron X-ray diffraction to ensure
resolution that supports binding and conformational analyses through a subaward to Co-I Cohen at Stanford’s
Synchrotron Radiation Lightsource (SSRL). Specific Aim 2 - Incorporate surface characteristics most favorably
impacting membrane protein crystallization into bifunctional SAM, ENF, and CENFs on ≥ 12 𝛾-prototype
24/96/384 well HTS crystallization plates. Optimize for crystallization in detergent containing systems and
advance development of the top six nucleation surfaces showing reproducible (n ≥ 6) crystallization
improvements of ≥ 15% increase in hits, ≥ 20% reduction in onset times, or ≥ 25% increase in the quantity of
crystals generated vs. controls. Specific Aim 3 - Incorporating SUD relevant target guidance from NIH and
domain experts with a tractability assessment by the Co-Is, expand crystallization screening with optimized
nucleation surfaces to ≥ 8 membrane proteins of varying class that would most benefit from near atomic
resolution structural data. Generate crystals for ≥ 2 targets for study at SSRL. Specific Aim 4 - Demonstrate the
tangible benefits and deploy the surface science product suite for membrane protein crystallization screening
with pharmaceutical company, NIH, and academic researchers to facilitate therapeutic target identification for
SUDs. DeNovX will sell its patented high throughput crystallization plates in a $450M-650M market.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew H. Bond其他文献
Macrocycle complexation chemistry. 33. Preparation of [Ca(12-crown-4)2][UO2Cl4] and [Ca(OH2)3(15-crown-5)] [UO2Cl4]. Structure of [Ca(OH2)3(15-crown-5)][UO2Cl4]
- DOI:
10.1007/bf01221904 - 发表时间:
1990-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Robin D. Rogers;Andrew H. Bond;William G. Hipple - 通讯作者:
William G. Hipple
Crystal structure of Pt(S2COEt)2
- DOI:
10.1007/bf01668236 - 发表时间:
2014-02-13 - 期刊:
- 影响因子:0.600
- 作者:
Robin D. Rogers;Michael J. Adrowski;Andrew H. Bond - 通讯作者:
Andrew H. Bond
Synthesis and crystal structure of [UO2(NO3)2(OH2 2]·2(benzo-15-crown-5)
- DOI:
10.1007/bf01199541 - 发表时间:
1992-06-01 - 期刊:
- 影响因子:0.600
- 作者:
Robin D. Rogers;Andrew H. Bond;William G. Hipple - 通讯作者:
William G. Hipple
Synthesis and crystallographic characterization of [Cd(OH2)2 (μ-Br)4 (Cd(2-hydroxyethyl sulfide) (μ-Br))2]n
- DOI:
10.1007/bf01195732 - 发表时间:
1993-11-01 - 期刊:
- 影响因子:0.600
- 作者:
Robin D. Rogers;Andrew H. Bond;Salvador Aguinaga - 通讯作者:
Salvador Aguinaga
Andrew H. Bond的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew H. Bond', 18)}}的其他基金
Advanced Nucleation Technologies for Membrane Protein Crystallization to Accelerate Structure-Based Drug Design for Substance Use Disorders
先进的膜蛋白结晶成核技术可加速针对药物滥用疾病的基于结构的药物设计
- 批准号:
10546186 - 财政年份:2022
- 资助金额:
$ 71.13万 - 项目类别:
Microfluidic Protein Flow Crystallization Using Engineered Nucleation Features for Serial and Traditional Crystallography
使用工程成核特征进行串行和传统晶体学的微流蛋白流结晶
- 批准号:
10323393 - 财政年份:2021
- 资助金额:
$ 71.13万 - 项目类别:
Multiplexed Nucleation Approaches for Enhanced High Throughput Screening of Co-Crystals
用于增强共晶高通量筛选的多重成核方法
- 批准号:
10081479 - 财政年份:2016
- 资助金额:
$ 71.13万 - 项目类别:
Nucleation Enhanced Crystallization of Pharmaceuticals in Continuous Flow Manufacturing to Mitigate Therapeutic Drug Shortages
在连续流程制造中成核增强药物结晶以缓解治疗药物短缺
- 批准号:
9137884 - 财政年份:2016
- 资助金额:
$ 71.13万 - 项目类别:
Multiplexed Nucleation Approaches for Enhanced High Throughput Screening of Co-Crystals
用于增强共晶高通量筛选的多重成核方法
- 批准号:
9134557 - 财政年份:2016
- 资助金额:
$ 71.13万 - 项目类别:
Multiplexed Nucleation Approaches for Enhanced High Throughput Screening of Co-Crystals
用于增强共晶高通量筛选的多重成核方法
- 批准号:
10226342 - 财政年份:2016
- 资助金额:
$ 71.13万 - 项目类别:
Microdomain Thermal Perturbations for Enhanced Nucleation of Proteins
微域热扰动增强蛋白质成核
- 批准号:
8833846 - 财政年份:2015
- 资助金额:
$ 71.13万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 71.13万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 71.13万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 71.13万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 71.13万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 71.13万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 71.13万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 71.13万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 71.13万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 71.13万 - 项目类别: