Advanced Nucleation Technologies for Membrane Protein Crystallization to Accelerate Structure-Based Drug Design for Substance Use Disorders
先进的膜蛋白结晶成核技术可加速针对药物滥用疾病的基于结构的药物设计
基本信息
- 批准号:10546186
- 负责人:
- 金额:$ 177.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Advanced DevelopmentBenchmarkingBindingBinding SitesBiological ProcessCharacteristicsChemicalsComplementCrystallizationDataDetergentsDiseaseDropsDrug DesignEngineeringEnsureGoalsHealth BenefitHumanHybridsHydrophobicityIslandKnowledge acquisitionLegal patentLocationMembrane ProteinsMethodsModificationMolecular ConformationNational Institute of Drug AbuseOutcomePeripheralPharmaceutical PreparationsPharmacologic SubstancePhaseProductivityProteinsProteomePublic HealthReproducibilityResearch PersonnelResolutionScienceSignal TransductionSolubilitySourceStructureSubstance Use DisorderSuccinate dehydrogenase (ubiquinone)SurfaceSynchrotronsSystems DevelopmentTechnologyTemperatureTimeUnited States National Institutes of HealthUniversitiesX ray diffraction analysisbasecommercial applicationdrug developmentflexibilityhigh throughput screeninghydrophilicityimprovedinnovationmonolayerprototypepublic health researchquinol fumarate reductaseresponsescreeningstructural biologysurfactantsynchrotron radiationtechnological innovationtherapeutic target
项目摘要
PROJECT SUMMARY
DeNovX creates innovative platform products that improve the crystallization of proteins and pharmaceuticals.
Of the ≈ 4700 human membrane proteins potentially involved in drug responses, ≈ 94% have yet to be
structurally characterized owing to difficulties in crystallization. The goal of Phase II is to adapt DeNovX’s
surface science agnostic approach to improving crystallization for use with membrane proteins to advance the
structure-based understanding of substance use disorders (SUDs) to benefit Public Health. DeNovX improves
crystallization using tunable substrates based on chemical interactions from bifunctional self-assembled
monolayers (SAMs); surface energy modifications from engineered nucleation features (ENFs); and a hybrid
strategy using chemically and energy modified ENFs (CENFs). A high confidence POC was achieved using the
membrane proteins quinol:fumarate reductase (QFR) and succinate:quinone oxidoreductase (SQR). Diffraction
quality QFR crystals were formed on a bifunctional SAM while no crystals formed on controls, and select ENFs
produced up to a 19-fold increase in QFR crystals vs. controls. The hypothesis is that bifunctional SAMs,
ENFs, or hybrid CENFs interacting with a membrane protein or its detergent envelope can facilitate
preorganization and crystal nucleation from supersaturated solutions. Specific Aim 1 - Conduct controlled,
replicate (n ≥ 6) studies of membrane protein crystallization outcomes using β-prototype bifunctional SAMs,
ENFs, and CENFs to identify those characteristics most favorably impacting crystal nucleation of the QFR and
SQR benchmark membrane proteins provided by Co-I Iverson under a subaward to Vanderbilt. These rigorous
and quantitative crystallization studies will be complemented with synchrotron X-ray diffraction to ensure
resolution that supports binding and conformational analyses through a subaward to Co-I Cohen at Stanford’s
Synchrotron Radiation Lightsource (SSRL). Specific Aim 2 - Incorporate surface characteristics most favorably
impacting membrane protein crystallization into bifunctional SAM, ENF, and CENFs on ≥ 12 𝛾-prototype
24/96/384 well HTS crystallization plates. Optimize for crystallization in detergent containing systems and
advance development of the top six nucleation surfaces showing reproducible (n ≥ 6) crystallization
improvements of ≥ 15% increase in hits, ≥ 20% reduction in onset times, or ≥ 25% increase in the quantity of
crystals generated vs. controls. Specific Aim 3 - Incorporating SUD relevant target guidance from NIH and
domain experts with a tractability assessment by the Co-Is, expand crystallization screening with optimized
nucleation surfaces to ≥ 8 membrane proteins of varying class that would most benefit from near atomic
resolution structural data. Generate crystals for ≥ 2 targets for study at SSRL. Specific Aim 4 - Demonstrate the
tangible benefits and deploy the surface science product suite for membrane protein crystallization screening
with pharmaceutical company, NIH, and academic researchers to facilitate therapeutic target identification for
SUDs. DeNovX will sell its patented high throughput crystallization plates in a $450M-650M market.
项目摘要
Denovx创建了创新的平台产品,可改善蛋白质和药物的结晶。
在潜在参与药物反应的≈4700个人膜蛋白中,≈94%尚未是
由于结晶的难度而在结构上表征。第二阶段的目的是适应Denovx的
表面科学不可知的方法,用于改善与膜蛋白一起使用的结晶以促进
基于结构的对物质使用障碍(SUD)的理解以使公共卫生受益。 DENOVX改进
基于双功能自组装的化学相互作用的可调底物结晶
单层(SAMS);工程成核特征(ENF)的表面能量修饰;和混合动力
使用化学和能量改性ENF(CENF)的策略。使用
膜蛋白喹酚:富马酸盐还原(QFR)和琥珀酸酯:喹酮氧化氧化激酶(SQR)。衍射
优质QFR晶体在双功能的SAM上形成,而在对照组上没有晶体,然后选择ENF
与对照组相比,QFR晶体的产生高达19倍。假设是双功能SAM,
ENFS或与膜蛋白相互作用或其敏感性包膜相互作用的混合CENF可以促进
过饱和溶液的组织前和晶体成核。特定目标1-受控的行为,
复制(n≥6)研究膜蛋白结晶结果的研究,使用β-功能型双功能SAM,
ENF和CENF确定这些特征最有利影响QFR的晶体成核和
Co-I Iverson在范德比尔特的亚武器下提供的SQR基准膜蛋白。这些严格
定量结晶研究将使用同步加速器X射线衍射完成,以确保
通过子宣告与斯坦福大学的Co-i Cohen进行约束和构象分析的决议
同步子辐射光线(SSRL)。特定目标2-最有利的表面特征
在≥12𝛾-蛋白质上,影响膜蛋白结晶成双功能的SAM,ENF和CENFS
24/96/384井HTS结晶板。确定包含系统和
提前开发前六个核表面,显示可再现(n≥6)结晶
命中率增加≥15%,发作时间减少20%,或≥25%的增长数量增加
晶体生成与控件。特定目的3-合并NIH的SUD相关目标指导
通过共同评估易于评估的领域专家,扩展结晶筛选,并优化
成核表面至≥8种不同类别的膜蛋白
分辨率结构数据。在SSRL上生成≥2个目标的晶体。特定目标4-证明
切实的好处并部署表面科学产品套件以膜蛋白结晶筛选
与制药公司,NIH和学术研究人员一起促进治疗目标识别
泡沫。 Denovx将在4.5亿至6.5亿美元的市场中出售其专利的高通量结晶板。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew H. Bond其他文献
Andrew H. Bond的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew H. Bond', 18)}}的其他基金
Advanced Nucleation Technologies for Membrane Protein Crystallization to Accelerate Structure-Based Drug Design for Substance Use Disorders
先进的膜蛋白结晶成核技术可加速针对药物滥用疾病的基于结构的药物设计
- 批准号:
10707123 - 财政年份:2022
- 资助金额:
$ 177.56万 - 项目类别:
Microfluidic Protein Flow Crystallization Using Engineered Nucleation Features for Serial and Traditional Crystallography
使用工程成核特征进行串行和传统晶体学的微流蛋白流结晶
- 批准号:
10323393 - 财政年份:2021
- 资助金额:
$ 177.56万 - 项目类别:
Multiplexed Nucleation Approaches for Enhanced High Throughput Screening of Co-Crystals
用于增强共晶高通量筛选的多重成核方法
- 批准号:
10081479 - 财政年份:2016
- 资助金额:
$ 177.56万 - 项目类别:
Nucleation Enhanced Crystallization of Pharmaceuticals in Continuous Flow Manufacturing to Mitigate Therapeutic Drug Shortages
在连续流程制造中成核增强药物结晶以缓解治疗药物短缺
- 批准号:
9137884 - 财政年份:2016
- 资助金额:
$ 177.56万 - 项目类别:
Multiplexed Nucleation Approaches for Enhanced High Throughput Screening of Co-Crystals
用于增强共晶高通量筛选的多重成核方法
- 批准号:
9134557 - 财政年份:2016
- 资助金额:
$ 177.56万 - 项目类别:
Multiplexed Nucleation Approaches for Enhanced High Throughput Screening of Co-Crystals
用于增强共晶高通量筛选的多重成核方法
- 批准号:
10226342 - 财政年份:2016
- 资助金额:
$ 177.56万 - 项目类别:
Microdomain Thermal Perturbations for Enhanced Nucleation of Proteins
微域热扰动增强蛋白质成核
- 批准号:
8833846 - 财政年份:2015
- 资助金额:
$ 177.56万 - 项目类别:
相似国自然基金
类脑计算系统基准测试研究
- 批准号:
- 批准年份:2022
- 资助金额:190 万元
- 项目类别:国际(地区)合作与交流项目
类脑计算系统基准测试研究
- 批准号:62250006
- 批准年份:2022
- 资助金额:190.00 万元
- 项目类别:国际(地区)合作与交流项目
高性能计算程序的基准测试程序自动生成方法
- 批准号:62202441
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
高性能计算程序的基准测试程序自动生成方法
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于工作负载表征的类脑体系结构基准测试模型与自动映射方法研究
- 批准号:
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
Sustained Biomaterial-mediated Inhibition of R-spondin 2 to Target Pathological Wnt Signaling in Post-Traumatic Osteoarthritis
生物材料介导的 R-spondin 2 持续抑制对创伤后骨关节炎中病理性 Wnt 信号传导的影响
- 批准号:
10518062 - 财政年份:2022
- 资助金额:
$ 177.56万 - 项目类别:
Advanced Nucleation Technologies for Membrane Protein Crystallization to Accelerate Structure-Based Drug Design for Substance Use Disorders
先进的膜蛋白结晶成核技术可加速针对药物滥用疾病的基于结构的药物设计
- 批准号:
10707123 - 财政年份:2022
- 资助金额:
$ 177.56万 - 项目类别:
Enhanced mass-spectrometry-based approaches for in-depth profiling of the cancer extracellular matrix
增强型基于质谱的方法,用于深入分析癌症细胞外基质
- 批准号:
10704135 - 财政年份:2022
- 资助金额:
$ 177.56万 - 项目类别:
Sustained Biomaterial-mediated Inhibition of R-spondin 2 to Target Pathological Wnt Signaling in Post-Traumatic Osteoarthritis
生物材料介导的 R-spondin 2 持续抑制对创伤后骨关节炎中病理性 Wnt 信号传导的影响
- 批准号:
10704167 - 财政年份:2022
- 资助金额:
$ 177.56万 - 项目类别:
Elucidating Angular Protein Motion using Kinetic Ensemble Refinement
使用动力学系综细化阐明角蛋白运动
- 批准号:
10203376 - 财政年份:2021
- 资助金额:
$ 177.56万 - 项目类别: