Investigating and identifying the heterogeneity in COVID-19 misinformation exposure on social media among Black and Rural communities to inform precision public health messaging
调查和识别黑人和农村社区社交媒体上 COVID-19 错误信息曝光的异质性,以提供精准的公共卫生信息
基本信息
- 批准号:10707213
- 负责人:
- 金额:$ 78.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAmericanAttitudeBehaviorBlack AmericanBlack PopulationsBlack raceCOVID-19COVID-19 impactCOVID-19 pandemicCOVID-19 vaccinationCharacteristicsChronic DiseaseCommunitiesComputer AnalysisConfusionConsentConsumptionCountyDataData SetDecision MakingDevelopmentDisparityDistressEconomicsEmergency SituationEquityFacebookFutureGenerationsGoalsHIVHIV vaccineHabitsHealthHealth CampaignHealth Disparities ResearchHealth behaviorHealthcareHeterogeneityHumanIndividualInequityInstitutionInterviewKnowledgeLanguageLinguisticsLocationLongitudinal cohortMachine LearningMalignant NeoplasmsMasksMaternal MortalityMeasuresMedicineMental HealthMethodsMinority GroupsMisinformationNational Institute on Minority Health and Health DisparitiesNatural Language ProcessingNoiseOutcomePatientsPerceptionPersuasive CommunicationPoliticsPredictive AnalyticsProcessPublic HealthPublished CommentQualitative MethodsRaceRiskRuralRural CommunityRural PopulationSamplingSignal TransductionSocial DistanceSourceStructural RacismStructureSurveysTarget PopulationsTestingTextTrainingTranslatingTrustTwitterUrbanicityVaccinationVariantcaucasian Americancombatcomputer frameworkcomputerized toolscurrent pandemicdesigndisparities in morbiditydistrustexperienceflexibilityhealth communicationhealth disparityhealth equityindividual responseinfodemicinsightlensmachine learning modelmortalitynovelpandemic diseasepatient orientedpopulation healthpredictive modelingpreferenceprospectiveracial disparityracial diversityrapid techniquerecruitresponserural Americansrural arearural dwellerssocialsocial mediasupport toolssynergismtheoriesurban area
项目摘要
PROJECT SUMMARY/ ABSTRACT
In the midst of the COVID-19 pandemic, a parallel `infodemic,' an abundance of reliable information and
inaccurate misinformation, persists. There has also been a significant increase in misinformation exchange and
consumption, largely on social media platforms, which threatens individual and public health. An important
challenge remains to develop strategies to detect trusted and accurate `signals' amidst dynamic misinformation
`noise.' This misinformation contributes to confusion, distrust, and distress around health behaviors such as
vaccination, mask wearing, and social distancing. The racial disparities in morbidity, mortality, social, and
economic consequences of COVID-19 are well documented; less studied are variations in the information-
seeking and COVID-19 health decision-making specific to Black and rural communities. Public health
information and campaigns have traditionally relied on theory-based surveys or interview methods to measure
knowledge and attitudes to design health messaging. Rapid expansion of social media use and parallel advances
in machine learning analytics provide a unique opportunity to track public views, knowledge, and
attitudes simultaneously to translate novel analytic insights into precision public health
communication with an intentional lens on Black and rural communities. This proposal aims to build
a computational framework to uncover heterogeneity in attitudes and misinformation exposure towards COVID-
19 vaccination, model predictors of highly engaging and persuasive messages (including sources, linguistic
choices, and content); and to use pragmatic qualitative methods to understand individual response to social
media misinformation with a specific lens on race (Black and white individuals) and location (rural and urban).
While we focus our message development process on COVID-19 vaccination as a timely and critical
behavior, and compare targeting across four specific audiences (Black rural residents, white rural residents,
Black urban residents, and white rural residents), our approach is highly adaptable across health topics
and scalable to a number of precision-targeted audiences. We see a need for flexible and nimble
methods for rapid, human-centered content generation that supports accurate, equitable, and effective precision
public health messaging. Computational tools powered by machine learning, predictive analytics, and natural
language processing married with patient-centered qualitative methods offer a powerful synergy to conventional
approaches to public health campaigns to identify and combat misinformation. The findings from this study will
directly inform broader public health action and future strategies so that they can be deployed in the current
pandemic and in ongoing efforts to address racial disparities in chronic diseases, HIV, cancer, maternal
mortality, and mental health.
项目总结/摘要
在COVID-19大流行期间,一个平行的"信息流行病",大量可靠的信息和
不准确的错误信息仍然存在。错误信息交流也显著增加,
消费,主要是在社交媒体平台上,这威胁到个人和公共健康。一个重要
挑战仍然是制定策略来在动态错误信息中检测可信且准确的“信号”
”“噪音。"这种错误的信息导致了对健康行为的困惑、不信任和痛苦,
接种疫苗、戴口罩和保持社交距离。在发病率、死亡率、社会和经济方面的种族差异
COVID-19的经济后果有很好的记录;较少研究的是信息的变化-
寻求和COVID-19健康决策专门针对黑人和农村社区。公共卫生
信息和活动传统上依赖于基于理论的调查或访谈方法来衡量
设计健康信息的知识和态度。社交媒体使用的迅速扩大和平行发展
在机器学习中,分析提供了一个独特的机会来跟踪公众的观点、知识,
同时将新颖的分析见解转化为精确的公共卫生
用一个有意的透镜来观察黑人和农村社区。该提案旨在建立
一个计算框架,揭示对COVID的态度和错误信息暴露的异质性-
19疫苗接种,高度吸引人和有说服力的信息的模型预测器(包括来源,语言
选择和内容);并使用务实的定性方法来了解个人对社会的反应,
媒体对种族(黑人和白色人)和地点(农村和城市)的特定透镜的错误信息。
虽然我们的信息开发过程侧重于COVID-19疫苗接种,
行为,并比较四个特定受众(黑人农村居民,白色农村居民,
黑人城市居民和白色农村居民),我们的方法在健康主题上具有高度适应性
并且可以扩展到许多精确定位的受众。我们认为需要灵活和敏捷的
快速、以人为本的内容生成方法,支持准确、公平和有效的精确度
公共卫生信息。由机器学习、预测分析和自然
语言处理与以患者为中心的定性方法结合,
公共卫生运动的方法,以确定和打击错误信息。这项研究的结果将
直接为更广泛的公共卫生行动和未来战略提供信息,
艾滋病毒/艾滋病、癌症、孕产妇死亡、艾滋病和疟疾等疾病方面的种族差异
死亡率和心理健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHARATH CHANDRA GUNTUKU其他文献
SHARATH CHANDRA GUNTUKU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHARATH CHANDRA GUNTUKU', 18)}}的其他基金
Investigating and identifying the heterogeneity in COVID-19 misinformation exposure on social media among Black and Rural communities to inform precision public health messaging
调查和识别黑人和农村社区社交媒体上 COVID-19 错误信息曝光的异质性,以提供精准的公共卫生信息
- 批准号:
10630593 - 财政年份:2022
- 资助金额:
$ 78.57万 - 项目类别:
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 78.57万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 78.57万 - 项目类别:
Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
- 批准号:
2412294 - 财政年份:2024
- 资助金额:
$ 78.57万 - 项目类别:
Standard Grant
Conference: Doctoral Consortium at Student Research Workshop at the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)
会议:计算语言学协会 (NAACL) 北美分会年会学生研究研讨会上的博士联盟
- 批准号:
2415059 - 财政年份:2024
- 资助金额:
$ 78.57万 - 项目类别:
Standard Grant
Conference: Polymeric Materials: Science and Engineering Division Centennial Celebration at the Spring 2024 American Chemical Society Meeting
会议:高分子材料:美国化学会 2024 年春季会议科学与工程部百年庆典
- 批准号:
2415569 - 财政年份:2024
- 资助金额:
$ 78.57万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346565 - 财政年份:2024
- 资助金额:
$ 78.57万 - 项目类别:
Standard Grant
REU Site: Research Experiences for American Leadership of Industry with Zero Emissions by 2050 (REALIZE-2050)
REU 网站:2050 年美国零排放工业领先地位的研究经验 (REALIZE-2050)
- 批准号:
2349580 - 财政年份:2024
- 资助金额:
$ 78.57万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346564 - 财政年份:2024
- 资助金额:
$ 78.57万 - 项目类别:
Standard Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
$ 78.57万 - 项目类别:
Standard Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
$ 78.57万 - 项目类别:
Standard Grant