Reprogramming cell-fate decisions through predictive modeling and synthetic biology
通过预测模型和合成生物学重新编程细胞命运决定
基本信息
- 批准号:10706965
- 负责人:
- 金额:$ 60.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:Abscisic AcidAffectBehaviorBiological ProcessCell DeathCell Fate ControlCell ReprogrammingCellsCellular MorphologyCessation of lifeChemicalsComplexComputer ModelsCore ProteinCoupledCustomDataDeacetylaseDecision MakingDeteriorationDevelopmentDiabetes MellitusDiseaseDoseDoxycyclineEngineeringEukaryotaFoundationsGene ExpressionGenesGenetic EngineeringGenetic RecombinationGenetic TranscriptionGrowthHemeLifeLysineMalignant NeoplasmsMammalsMediatingMicrofluidicsMicroscopyMitochondriaMitoticModelingMolecularMothersNeurodegenerative DisordersOrganismPatternPeriodicalsPhenotypePhysiologicalPlayPopulationProcessProteinsRegulationResearchResourcesRibosomal DNARoleSaccharomyces cerevisiaeSaccharomycetalesStructureSynthetic GenesSystemTestingTimeYeastscell injurydesigndiagnostic strategyexperimental studygene conservationgene interactionimprovedinsightmodels and simulationpredictive modelingprogramspromoterprotein expressionsynthetic biologytooltreatment strategy
项目摘要
Project Summary
Advances in synthetic biology provide powerful tools to interrogate the complex relationship between
network structure and function. In this study, we will combine synthetic biology with computational modeling to
investigate network-mediated regulation of cell damage and deterioration, a complex biological process. As
similar studies in mammals are prohibitively time- and resource-intensive, we choose to focus on
Saccharomyces cerevisiae, which has proven to be a genetically tractable model for many fundamental
processes in mitotic cells and has allowed identification of many conserved genes that regulate cell-fate
decisions in eukaryotes. Emerging questions include how these genes interact and how the interactions change
dynamically to drive multi-generational cell deterioration dynamics. We recently found two distinct phenotypes
in genetically identical yeast cells as they approach cell death: one with decreased ribosomal DNA (rDNA)
silencing and nucleolar decline (Mode 1) whereas the other with heme depletion and mitochondrial decline (Mode
2). We found that stochasticity plays an important role in choosing one of the two paths, but once the fate decision
is made, it is almost always irreversible. We identified a core molecular circuit, consisting of the lysine
deacetylase Sir2 and the heme-activated protein (HAP) transcriptional complex, that governs the decision to
select one of these two paths. Based on the model, we were able to engineer cells to follow a third path with a
dramatically extended period of growth and survival, free of deterioration (Mode 3). In this proposal, we will
expand these efforts and systematically perturb and rewire the core circuit that controls cell fate in order to
reprogram its decision-making process. In Aim 1, we will use chemically-inducible promoters to control
expression of Sir2 and HAP and thereby modulate cell-fate decisions in isogenic cells. We will use microfluidics
to generate distinct, dynamic patterns of Sir2 and HAP expression and evaluate their effects on damage
accumulation, physiological changes, and cellular decline. In Aim 2, we will genetically rewire the core Sir2-HAP
circuit under the guidance of computational modeling and examine how these engineered circuits govern cell-
fate decisions and cell deterioration dynamics. In Aim 3, we will use high-throughput microfluidics to identify the
gene expression programs associated with Mode 1, Mode 2, and Mode 3 and examine how perturbations of
these programs affect multi-generational deterioration dynamics. These analyses will uncover the genes and
processes that underlie the missing connections between the Sir2-HAP core circuit and downstream modules
that underlie cellular decline leading to cell death. They will enable us to expand our computational model and
improve its predictive power. Throughout the study, we will construct deterministic and stochastic models, which
will produce testable predictions and guide engineering of synthetic gene circuits. If successful, this research will
advance a quantitative and predictive understanding of cellular fate decisions and cell deterioration.
项目摘要
合成生物学的进展提供了强有力的工具来询问
网络结构和功能。在这项研究中,我们将结合合成生物学和计算建模来
研究网络对细胞损伤和恶化的调节,这是一个复杂的生物过程。AS
在哺乳动物中的类似研究是令人望而却步的时间和资源密集型的,我们选择专注于
酿酒酵母,它已被证明是一个遗传模型,对许多基本的
在有丝分裂细胞中的过程,并使许多保守的基因得以确定,这些基因调节细胞的命运
真核生物的决定。新出现的问题包括这些基因如何相互作用以及相互作用如何变化
动态驱动多代细胞退化动力学。我们最近发现了两种不同的表型
在接近细胞死亡的遗传相同的酵母细胞中:一种核糖体DNA(RDNA)减少
沉默和核仁减少(模式1),而另一种是血红素耗竭和线粒体下降(模式1
2)。我们发现,随机性在两条路径中的选择中起着重要的作用,但一旦命运决定
它几乎总是不可逆转的。我们发现了一个核心分子回路,由赖氨酸组成
去乙酰酶Sir2和血红素活化蛋白(HAP)转录复合体,它控制着
选择这两条路径中的一条。在这个模型的基础上,我们能够设计细胞沿着第三条路径
显著延长了生长和存活期,没有恶化(模式3)。在这项提案中,我们将
扩大这些努力,系统地扰乱和重新连接控制细胞命运的核心电路,以便
重新规划其决策流程。在目标1中,我们将使用化学诱导启动子来控制
Sir2和HAP的表达,从而调节同基因细胞中的细胞命运决定。我们将使用微流控技术
生成不同的Sir2和HAP表达动态模式并评估其对损伤的影响
积累、生理变化和细胞衰退。在目标2中,我们将对核心Sir2-HAP进行基因重组
电路在计算建模的指导下,并研究这些工程电路如何管理单元-
命运决定和细胞退化动力学。在目标3中,我们将使用高通量微流控来识别
与模式1、模式2和模式3相关的基因表达程序,并检查扰动如何
这些计划会影响多代人的恶化动态。这些分析将揭开基因和
作为Sir2-HAP核心电路和下游模块之间缺失连接的基础的过程
这是导致细胞死亡的细胞衰退的基础。它们将使我们能够扩展我们的计算模型并
提高其预测能力。在整个研究过程中,我们将构建确定性和随机性模型,
将产生可测试的预测,并指导合成基因电路的工程设计。如果成功,这项研究将
促进对细胞命运决定和细胞退化的定量和预测性理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFF M HASTY其他文献
JEFF M HASTY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFF M HASTY', 18)}}的其他基金
Development of Engineered Native Bacteria as a Tool for Functional Manipulation of the Gut Microbiome
开发工程原生细菌作为肠道微生物组功能操纵的工具
- 批准号:
10737475 - 财政年份:2023
- 资助金额:
$ 60.77万 - 项目类别:
Reprogramming cell-fate decisions through predictive modeling and synthetic biology
通过预测模型和合成生物学重新编程细胞命运决定
- 批准号:
10784558 - 财政年份:2022
- 资助金额:
$ 60.77万 - 项目类别:
Reprogramming cell-fate decisions through predictive modeling and synthetic biology
通过预测模型和合成生物学重新编程细胞命运决定
- 批准号:
10344041 - 财政年份:2022
- 资助金额:
$ 60.77万 - 项目类别:
Reprogramming cell-fate decisions through predictive modeling and synthetic biology
通过预测模型和合成生物学重新编程细胞命运决定
- 批准号:
10908026 - 财政年份:2022
- 资助金额:
$ 60.77万 - 项目类别:
Design and characterization of bacterial population dynamics in solid tumor models
实体瘤模型中细菌种群动态的设计和表征
- 批准号:
10212134 - 财政年份:2021
- 资助金额:
$ 60.77万 - 项目类别:
Design and characterization of bacterial population dynamics in solid tumor models
实体瘤模型中细菌种群动态的设计和表征
- 批准号:
10456087 - 财政年份:2021
- 资助金额:
$ 60.77万 - 项目类别:
A microbiome-informed platform for the development and testing of bacterial therapies for colorectal cancer
用于开发和测试结直肠癌细菌疗法的微生物组信息平台
- 批准号:
10166805 - 财政年份:2020
- 资助金额:
$ 60.77万 - 项目类别:
A microbiome-informed platform for the development and testing of bacterial therapies for colorectal cancer
用于开发和测试结直肠癌细菌疗法的微生物组信息平台
- 批准号:
9974305 - 财政年份:2020
- 资助金额:
$ 60.77万 - 项目类别:
A microbiome-informed platform for the development and testing of bacterial therapies for colorectal cancer
用于开发和测试结直肠癌细菌疗法的微生物组信息平台
- 批准号:
10397153 - 财政年份:2020
- 资助金额:
$ 60.77万 - 项目类别:
A microbiome-informed platform for the development and testing of bacterial therapies for colorectal cancer
用于开发和测试结直肠癌细菌疗法的微生物组信息平台
- 批准号:
10631898 - 财政年份:2020
- 资助金额:
$ 60.77万 - 项目类别:
相似海外基金
NSF Postdoctoral Fellowship in Biology: Rewriting the Code: Elucidating how early life adversity alters DNA to affect amygdala-related behavior
NSF 生物学博士后奖学金:重写代码:阐明早年逆境如何改变 DNA 从而影响杏仁核相关行为
- 批准号:
2208822 - 财政年份:2023
- 资助金额:
$ 60.77万 - 项目类别:
Fellowship Award
THE AFFECT OF REGINAOL CHATACTERISTIC ON TRAVEL BEHAVIOR AND HELTH FROM DRIVING CESSATON
雷吉诺尔特征对驾驶塞萨顿旅行行为和健康的影响
- 批准号:
20K04741 - 财政年份:2020
- 资助金额:
$ 60.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does financial education affect financial behavior?
财商教育会影响财商行为吗?
- 批准号:
19K01769 - 财政年份:2019
- 资助金额:
$ 60.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
How the online shopping and flea market apps affect the consumer behavior and cross border electronic commerce?
网购和跳蚤市场应用程序如何影响消费者行为和跨境电子商务?
- 批准号:
18K01798 - 财政年份:2018
- 资助金额:
$ 60.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
When free trade agreement meets competition----How does EU-Korea FTA affect Japanese firms' investment behavior
当自贸协定遇上竞争——欧盟-韩国自贸协定如何影响日本企业的投资行为
- 批准号:
18K12777 - 财政年份:2018
- 资助金额:
$ 60.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Examination of the relationship between the maternal mental health, and the development and behavior of children, and the psychosocial factors that affect them
检查母亲心理健康与儿童的发展和行为之间的关系以及影响他们的心理社会因素
- 批准号:
17K16375 - 财政年份:2017
- 资助金额:
$ 60.77万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
How Does Early Sensory Experience Affect Cortical Connections and Behavior?
早期感官体验如何影响皮质连接和行为?
- 批准号:
9030107 - 财政年份:2015
- 资助金额:
$ 60.77万 - 项目类别:
How Does Early Sensory Experience Affect Cortical Connections and Behavior?
早期感官体验如何影响皮质连接和行为?
- 批准号:
9197675 - 财政年份:2015
- 资助金额:
$ 60.77万 - 项目类别:
Childhood positive affect and anger as predictors of adolescent risky behavior
童年积极影响和愤怒是青少年危险行为的预测因素
- 批准号:
9139461 - 财政年份:2015
- 资助金额:
$ 60.77万 - 项目类别:
Do short term changes in atmospheric pressure affect the calling behavior of male crickets
大气压力的短期变化会影响雄性蟋蟀的叫声行为吗
- 批准号:
467890-2014 - 财政年份:2014
- 资助金额:
$ 60.77万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




