Mechanisms of Salmonella-mediated disruption of colonization resistance in the inflamed gut
沙门氏菌介导的炎症肠道定植抵抗破坏机制
基本信息
- 批准号:10707174
- 负责人:
- 金额:$ 48.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-19 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAmino AcidsAspartateBacteriaBacteroidesBacteroides thetaiotaomicronCatabolismCitric Acid CycleCytolysisDataEcosystemEnterobacteriaceaeEpithelial CellsEscherichia coliFluorescence MicroscopyFumaratesGastroenteritisGastrointestinal tract structureGenesGenetic TranscriptionGerm-FreeGrowthIn VitroInfectionInflammationIntestinesInvadedMeasuresMediatingMetabolicMetabolismMusNitratesNutrientOxidantsPathogenesisPathway interactionsPhasePhysiologyPlayProductionPropionatesReactive Oxygen SpeciesReporterResearchRespirationRoleSalmonellaSalmonella typhimuriumSourceStudy modelsTaxonTestingType III Secretion System PathwayUnited StatesVirulenceVolatile Fatty AcidsWorkantimicrobialcolonization resistancecommensal bacteriacommensal microbesdiarrheal diseaseenteric pathogenessaysexperimental studygut inflammationgut microbiotahost microbiotain vivoinnovationintestinal epitheliummicrobialmicrobiotamouse modelmutantnon-typhoidal Salmonellanovelpathogenpathogenic bacteriaresident commensalsresponse
项目摘要
PROJECT SUMMARY
Infection with non-typhoidal Salmonella is 1 of 4 most prevalent global causes of diarrheal disease. In
the United States, Salmonella enterica serovar Typhimurium (S. Tm) infection results in 1.35 million illnesses
annually. To infect the gastrointestinal tract, S. Tm contends with the resident commensal bacteria (gut
microbiota). The gut microbiota benefits the host by limiting enteric pathogen expansion (colonization
resistance), partially via the production of inhibitory metabolites such as short-chain fatty acids (SCFA) (e.g.,
propionate) and nutrient sequestration (e.g., amino acids). Thus, successful bacterial pathogens must possess
mechanisms to survive in the competitive ecosystem of the gut. S. Tm uses a Type III secretion system (T3SS-
I) to invade intestinal epithelial cells (EICs) and induce intestinal inflammation. As a result, S. Tm disrupts the
host-microbiota ecosystem and overcomes microbiota-mediated colonization resistance by using inflammation-
derived electron acceptors such as fumarate and nitrate for anaerobic respiration. However, the mechanisms
that drive Salmonella-induced disruption of the microbial ecosystem in the gut and how this disruption affects
host physiology and promotes pathogen expansion remain largely unknown. In this application, we will elucidate
the mechanisms by which S. Tm-induced intestinal inflammation enables the pathogen to (i) overpower SCFA-
mediated colonization resistance and (ii) gain access to microbiota-derived aspartate for anaerobic fumarate
respiration. Our robust preliminary data obtained from in vitro studies and murine models demonstrate that the
pathogen may use propionate metabolism to fine-tune virulence through modulation of T3SS-I expression. Our
studies further reveal that S. Tm-induced inflammation causes an increase in Bacteroides-derived aspartate in
the intestinal lumen and that aspartate conversion into fumarate fuels S. Tm fumarate respiration in vitro and in
vivo. Our preliminary data support our central hypothesis that pathogen-induced intestinal inflammation allows
S. Tm to overcome mechanisms of colonization resistance established by the microbiota by (i) downregulating
invasion of EICs via catabolism of Bacteroides-derived propionate and (ii) promoting the release of aspartate by
commensal Bacteroides, which S. Tm uses to outcompete commensal Enterobacteriaceae. To test this
hypothesis, we will define the impact of propionate catabolism on S. Tm pathogenesis in the inflamed gut (Aim
1). Aim 2 will identify the mechanism by which intestinal inflammation promotes increased aspartate availability
in the inflamed gut. In Aim 3, we will determine how aspartate enables S. Tm to overcome colonization resistance
by Enterobacteriaceae, a bacterium taxon that plays a critical role in protecting the host against S. Tm infection.
If successful, this research will establish critical conceptual advances in understanding how enteric pathogens
exploit the gut microbiota for expansion during gastroenteritis. Expected findings will provide a deeper
understanding of a novel mechanism used by this bacterial pathogen to evade the intestinal microbiota and
establish infection.
项目摘要
非伤寒沙门氏菌感染是全球4种最常见的腹泻病原因之一。在
美国,沙门氏菌肠道血清型鼠伤寒沙门氏菌(S. TM)感染导致135万人患病
每年。感染胃肠道,S。Tm与肠道内的常驻细菌(肠道
微生物群)。肠道微生物群通过限制肠道病原体扩张(定植)而有益于宿主
抗性),部分地通过产生抑制性代谢物如短链脂肪酸(SCFA)(例如,
丙酸盐)和养分螯合(例如,氨基酸)。因此,成功的细菌病原体必须具备
在肠道竞争性生态系统中生存的机制。S. Tm使用III型分泌系统(T3 SS-1)。
I)侵入肠上皮细胞(EIC)并诱导肠道炎症。因此,S. Tm破坏了
宿主-微生物群生态系统,并通过使用炎症-
衍生的电子受体,如富马酸盐和硝酸盐,用于无氧呼吸。然而,机制
驱动沙门氏菌诱导的肠道微生物生态系统破坏以及这种破坏如何影响
宿主生理学和促进病原体扩张仍然是未知的。在本申请中,我们将阐明
S. Tm诱导的肠道炎症使病原体能够(i)压倒SCFA-
介导的定殖抗性和(ii)获得微生物来源的天冬氨酸用于厌氧富马酸
呼吸我们从体外研究和小鼠模型中获得的可靠的初步数据表明,
病原体可能利用丙酸代谢通过调节T3 SS-I表达来微调毒力。我们
研究进一步揭示了S. TM诱导的炎症导致类杆菌衍生的天冬氨酸增加,
肠腔和天冬氨酸转化为富马酸燃料S。体外和体内富马酸Tm呼吸
vivo.我们的初步数据支持我们的中心假设,即病原体诱导的肠道炎症允许
S. Tm通过以下方式克服由微生物群建立的定殖抗性机制:(i)下调
通过类杆菌衍生的丙酸盐的催化作用侵入EIC,和(ii)通过
嗜盐拟杆菌属(Bacteroides),S. Tm用于胜过细菌性肠杆菌科。为了验证这一
假设,我们将定义丙酸催化剂对S. Tm在炎症肠道中的发病机制(目的
1)。目标2将确定肠道炎症促进天冬氨酸利用率增加的机制
在发炎的肠子里在目标3中,我们将确定天冬氨酸如何使S。Tm克服定殖抗性
肠杆菌科是一种在保护宿主免受沙门氏菌感染中起关键作用的细菌分类群。感染。
如果成功,这项研究将建立关键的概念性进展,了解肠道病原体如何
在肠胃炎期间利用肠道微生物群进行扩张。预期结果将提供更深入的
了解这种细菌病原体逃避肠道微生物群的新机制,
建立感染。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mariana Xavier Byndloss其他文献
Mariana Xavier Byndloss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mariana Xavier Byndloss', 18)}}的其他基金
Obesogenic diet-induced intestinal epithelium repair responses link dysbiosis and cardiovascular disease
肥胖饮食诱导的肠上皮修复反应将生态失调与心血管疾病联系起来
- 批准号:
10345474 - 财政年份:2022
- 资助金额:
$ 48.95万 - 项目类别:
Mechanisms of Salmonella-mediated disruption of colonization resistance in the inflamed gut
沙门氏菌介导的炎症肠道定植抵抗破坏机制
- 批准号:
10595200 - 财政年份:2022
- 资助金额:
$ 48.95万 - 项目类别:
Obesogenic diet-induced intestinal epithelium repair responses link dysbiosis and cardiovascular disease
肥胖饮食诱导的肠上皮修复反应将生态失调与心血管疾病联系起来
- 批准号:
10549324 - 财政年份:2022
- 资助金额:
$ 48.95万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 48.95万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 48.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 48.95万 - 项目类别:
Continuing Grant
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 48.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 48.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 48.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 48.95万 - 项目类别:
Studentship
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 48.95万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 48.95万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 48.95万 - 项目类别: