Data-driven Computational Modeling and Refinement of Protein Structures on Genomic Scales

数据驱动的计算建模和基因组尺度蛋白质结构的细化

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT: A key remaining gap in our understanding of biological systems at the molecular level is how to structurally annotate the “dark” protein families—the portion of protein families unsolved by experimental structure determination techniques and inaccessible to homology modeling. Nearly a quarter of protein families are currently dark, where molecular conformation is completely unknown and this gap is likely to expand further with the rapid accumulation of new protein sequences without annotated structures. The key challenge is now how to bridge this gap to gain a comprehensive understanding of biology and disease, thereby paving the way to structure-based drug design at genomic scale. Computational protein modeling plays a key role in this effort due to its scalability and genome-wide applicability. My laboratory focuses on the development and application of novel data-driven computational modeling and refinement methods to increase accuracy and coverage of protein structure prediction on genomic scale irrespective of homology. Future research focuses on improving homology-free protein folding using multiscale de novo modeling driven by deep learning-based inter-residue interactions, enhancing low-homology threading or fold recognition by formulating new algorithms for remote template identification despite low evolutionary relatedness, and developing methods for high-resolution restrained structure refinement guided by generalized ensemble search for driving computational models to near-experimental accuracy. Proteome-wide computational modeling and refinement effort will be conducted, leveraging our unique access to large-scale supercomputing infrastructure, to build high-confidence models covering the dark protein families, which will be organized in a database for public access. This comprehensive database of structural annotations will shed light on the structures, functions, and interactions of the dark proteome, with broad implications in drug discovery and human health. Software and web servers will be freely disseminated to help worldwide community of biomedical researchers to apply these methods to their specific research problems, thus multiplying the impact of computational modeling on basic research in biology and medicine. My research program will involve close collaborations with other NIGMS-supported investigators, create training opportunities for the next generation of researchers including members from underrepresented groups, and foster future research advances in structural bioinformatics and computational biology.
项目总结/摘要: 我们在分子水平上理解生物系统的一个关键差距是如何在结构上 注释“暗”蛋白质家族-实验结构未解决的蛋白质家族部分 测定技术和同源性建模不可访问。近四分之一的蛋白质家族 目前黑暗,分子构象是完全未知的,这种差距可能会进一步扩大 随着没有注释结构的新蛋白质序列的快速积累。现在的关键挑战是 如何弥合这一差距,以全面了解生物学和疾病,从而铺平道路, to structure-based结构为基础的drug药物design设计at genomic基因组scale规模.计算蛋白质建模在这一努力中起着关键作用 由于其可扩展性和全基因组适用性。我的实验室专注于开发和应用 新的数据驱动的计算建模和细化方法,以提高准确性和覆盖面, 蛋白质结构预测的基因组规模无关的同源性。未来的研究重点是改善 使用由基于深度学习的残基间驱动的多尺度从头建模的无同源性蛋白质折叠 相互作用,通过制定新的远程算法来增强低同源性线程或折叠识别 模板识别,尽管低进化相关性,并开发高分辨率的方法 受约束的结构细化引导的广义系综搜索驱动计算模型, 接近实验的精确度。将进行蛋白质组范围的计算建模和细化工作, 利用我们对大型超级计算基础设施的独特访问, 涵盖了暗蛋白家族,将被组织在一个数据库中供公众访问。这一全面 结构注释数据库将揭示黑暗的结构,功能和相互作用 蛋白质组,在药物发现和人类健康的广泛影响。软件和网络服务器将免费 传播,以帮助世界各地的生物医学研究人员将这些方法应用于他们的具体领域。 研究问题,从而倍增计算建模对生物学基础研究的影响, 药我的研究计划将涉及与其他NIGMS支持的研究人员密切合作, 为下一代研究人员创造培训机会,包括代表性不足的成员 小组,并促进结构生物信息学和计算生物学的未来研究进展。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
E(3) equivariant graph neural networks for robust and accurate protein-protein interaction site prediction.
  • DOI:
    10.1371/journal.pcbi.1011435
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
  • 通讯作者:
iQDeep: an integrated web server for protein scoring using multiscale deep learning models
iQDeep:使用多尺度深度学习模型进行蛋白质评分的集成网络服务器
  • DOI:
    10.1016/j.jmb.2023.168057
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Shuvo, Md Hossain;Karim, Mohimenul;Bhattacharya, Debswapna
  • 通讯作者:
    Bhattacharya, Debswapna
Contact-Assisted Threading in Low-Homology Protein Modeling.
低同源性蛋白质建模中的接触辅助线程。
  • DOI:
    10.1007/978-1-0716-2974-1_3
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bhattacharya,Sutanu;Roche,Rahmatullah;Shuvo,MdHossain;Moussad,Bernard;Bhattacharya,Debswapna
  • 通讯作者:
    Bhattacharya,Debswapna
The transformative power of transformers in protein structure prediction.
QDeep: distance-based protein model quality estimation by residue-level ensemble error classifications using stacked deep residual neural networks
  • DOI:
    10.1093/bioinformatics/btaa455
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Shuvo, Md Hossain;Bhattacharya, Sutanu;Bhattacharya, Debswapna
  • 通讯作者:
    Bhattacharya, Debswapna
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Debswapna Bhattacharya其他文献

Debswapna Bhattacharya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Debswapna Bhattacharya', 18)}}的其他基金

Data-driven Computational Modeling and Refinement of Protein Structures on Genomic Scales
数据驱动的计算建模和基因组尺度蛋白质结构的细化
  • 批准号:
    10604529
  • 财政年份:
    2020
  • 资助金额:
    $ 38.45万
  • 项目类别:
Data-driven Computational Modeling and Refinement of Protein Structures on Genomic Scales
数据驱动的计算建模和基因组尺度蛋白质结构的细化
  • 批准号:
    10456948
  • 财政年份:
    2020
  • 资助金额:
    $ 38.45万
  • 项目类别:
Data-driven Computational Modeling and Refinement of Protein Structures on Genomic Scales
数据驱动的计算建模和基因组尺度蛋白质结构的细化
  • 批准号:
    10029150
  • 财政年份:
    2020
  • 资助金额:
    $ 38.45万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.45万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 38.45万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 38.45万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 38.45万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 38.45万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 38.45万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 38.45万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 38.45万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 38.45万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 38.45万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了