Data-driven Computational Modeling and Refinement of Protein Structures on Genomic Scales
数据驱动的计算建模和基因组尺度蛋白质结构的细化
基本信息
- 批准号:10456948
- 负责人:
- 金额:$ 37.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAmino Acid SequenceAutomobile DrivingBasic ScienceBioinformaticsBiologyCollaborationsCommunitiesComplexComputational BiologyComputer ModelsComputer softwareDataDatabasesDevelopmentDiseaseDrug DesignFamilyFosteringGenomicsHealthHomology ModelingHumanInfrastructureLaboratoriesLightMedicineMethodsModelingMolecularMolecular BiologyMolecular ConformationMolecular DiseaseNational Institute of General Medical SciencesPlayProtein FamilyProteinsProteomeResearchResearch PersonnelResolutionStructureSupercomputingTechniquesUnderrepresented Populationsbasebiological systemsdeep learningdrug discoverygenome-wideimprovedmembernext generationnovelprogramsprotein foldingprotein structureprotein structure predictionpublic databasetraining opportunityweb server
项目摘要
PROJECT SUMMARY/ABSTRACT:
A key remaining gap in our understanding of biological systems at the molecular level is how to structurally
annotate the “dark” protein families—the portion of protein families unsolved by experimental structure
determination techniques and inaccessible to homology modeling. Nearly a quarter of protein families are
currently dark, where molecular conformation is completely unknown and this gap is likely to expand further
with the rapid accumulation of new protein sequences without annotated structures. The key challenge is now
how to bridge this gap to gain a comprehensive understanding of biology and disease, thereby paving the way
to structure-based drug design at genomic scale. Computational protein modeling plays a key role in this effort
due to its scalability and genome-wide applicability. My laboratory focuses on the development and application
of novel data-driven computational modeling and refinement methods to increase accuracy and coverage of
protein structure prediction on genomic scale irrespective of homology. Future research focuses on improving
homology-free protein folding using multiscale de novo modeling driven by deep learning-based inter-residue
interactions, enhancing low-homology threading or fold recognition by formulating new algorithms for remote
template identification despite low evolutionary relatedness, and developing methods for high-resolution
restrained structure refinement guided by generalized ensemble search for driving computational models to
near-experimental accuracy. Proteome-wide computational modeling and refinement effort will be conducted,
leveraging our unique access to large-scale supercomputing infrastructure, to build high-confidence models
covering the dark protein families, which will be organized in a database for public access. This comprehensive
database of structural annotations will shed light on the structures, functions, and interactions of the dark
proteome, with broad implications in drug discovery and human health. Software and web servers will be freely
disseminated to help worldwide community of biomedical researchers to apply these methods to their specific
research problems, thus multiplying the impact of computational modeling on basic research in biology and
medicine. My research program will involve close collaborations with other NIGMS-supported investigators,
create training opportunities for the next generation of researchers including members from underrepresented
groups, and foster future research advances in structural bioinformatics and computational biology.
项目总结/文摘:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Debswapna Bhattacharya其他文献
Debswapna Bhattacharya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Debswapna Bhattacharya', 18)}}的其他基金
Data-driven Computational Modeling and Refinement of Protein Structures on Genomic Scales
数据驱动的计算建模和基因组尺度蛋白质结构的细化
- 批准号:
10604529 - 财政年份:2020
- 资助金额:
$ 37.65万 - 项目类别:
Data-driven Computational Modeling and Refinement of Protein Structures on Genomic Scales
数据驱动的计算建模和基因组尺度蛋白质结构的细化
- 批准号:
10707069 - 财政年份:2020
- 资助金额:
$ 37.65万 - 项目类别:
Data-driven Computational Modeling and Refinement of Protein Structures on Genomic Scales
数据驱动的计算建模和基因组尺度蛋白质结构的细化
- 批准号:
10029150 - 财政年份:2020
- 资助金额:
$ 37.65万 - 项目类别:
相似海外基金
Cerebral infarction treatment strategy using collagen-like "triple helix peptide" containing functional amino acid sequence
含功能氨基酸序列的类胶原“三螺旋肽”治疗脑梗塞策略
- 批准号:
23K06972 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of a screening method for functional microproteins independent of amino acid sequence conservation
不依赖氨基酸序列保守性的功能性微生物蛋白筛选方法的建立
- 批准号:
23KJ0939 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Effects of amino acid sequence and lipids on the structure and self-association of transmembrane helices
氨基酸序列和脂质对跨膜螺旋结构和自缔合的影响
- 批准号:
19K07013 - 财政年份:2019
- 资助金额:
$ 37.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of electron-transfer amino acid sequence probe with an interaction for protein and cell
蛋白质与细胞相互作用的电子转移氨基酸序列探针的构建
- 批准号:
16K05820 - 财政年份:2016
- 资助金额:
$ 37.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of artificial antibody of anti-bitter taste receptor using random amino acid sequence library
利用随机氨基酸序列库开发抗苦味受体人工抗体
- 批准号:
16K08426 - 财政年份:2016
- 资助金额:
$ 37.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The aa15-17 amino acid sequence in the terminal protein domain of HBV polymerase as a viral factor affect-ing in vivo as well as in vitro replication activity of the virus.
HBV聚合酶末端蛋白结构域中的aa15-17氨基酸序列作为影响病毒体内和体外复制活性的病毒因子。
- 批准号:
25461010 - 财政年份:2013
- 资助金额:
$ 37.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Amino acid sequence analysis of fossil proteins using mass spectrometry
使用质谱法分析化石蛋白质的氨基酸序列
- 批准号:
23654177 - 财政年份:2011
- 资助金额:
$ 37.65万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Precise hybrid synthesis of glycoprotein through amino acid sequence-specific introduction of oligosaccharide followed by enzymatic transglycosylation reaction
通过氨基酸序列特异性引入寡糖,然后进行酶促糖基转移反应,精确杂合合成糖蛋白
- 批准号:
22550105 - 财政年份:2010
- 资助金额:
$ 37.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimating selection on amino-acid sequence polymorphisms in Drosophila
果蝇氨基酸序列多态性选择的估计
- 批准号:
NE/D00232X/1 - 财政年份:2006
- 资助金额:
$ 37.65万 - 项目类别:
Research Grant
Construction of a neural network for detecting novel domains from amino acid sequence information only
构建仅从氨基酸序列信息检测新结构域的神经网络
- 批准号:
16500189 - 财政年份:2004
- 资助金额:
$ 37.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




