Genome-wide prediction and analysis of coding variants

编码变体的全基因组预测和分析

基本信息

  • 批准号:
    7681317
  • 负责人:
  • 金额:
    $ 29.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The identification of genetic variants that are associated with disease is an important step in linking sequence data with new approaches to improve human health. Among the sequence variants currently known to be directly linked with human disease, 57% are based on mutations that encode a single nonsynonymous amino acid substitution in the corresponding protein. An additional 23% of variants linked with disease are due to small insertions and deletions (indels) in genes. Therefore, an important problem in human health is the identification of coding variants, SNPs and indels, which affect protein function and might be associated with disease. To this end, we developed SIFT, an algorithm that predicts if an amino acid substitution affects protein function. This algorithm, available at the SIFT website (http://blocks.fhcrc.org/sift/SIFT.html), is widely used by the research community and is often used as a benchmark for similar prediction algorithms. The popularity of SIFT and other similar tools emphasizes the need to analyze coding variants and prioritize which amongst them are most likely to have a phenotypic effect. Moreover, large numbers of variants, including SNPs and indels, are being generated by advances in DNA sequencing technologies and they will require analysis. We propose to expand SIFT by developing an algorithm that will predict which small coding indels affect protein function and hence may be involved in disease. In addition, we propose to enhance the ability of SIFT to perform large-scale analysis for coding variants. These new features will be incorporated into the SIFT web server to enable genome-wide analysis. Executables and code will also be made freely available to the research community. Recent advances in DNA sequencing technologies are generating large numbers of genetic variation that necessitate analysis. Small insertions and deletions (indels) are common types of variation and 23% of variants linked with disease are due to indels. In order to improve identification of disease variants, we propose to expand our existing algorithm SIFT by enabling the prediction of small coding indels that affect protein function. In addition, we propose to enhance the ability of SIFT to perform large-scale analysis for coding variants.
描述(由申请人提供):识别与疾病相关的遗传变异是将序列数据与改善人类健康的新方法联系起来的重要步骤。在目前已知的与人类疾病直接相关的序列变体中,57%是基于相应蛋白质中编码单个非同义氨基酸替代的突变。与疾病相关的另外23%的变异是由于基因的小插入和小缺失(Indels)。因此,人类健康中的一个重要问题是识别编码变异,SNPs和Indels,它们影响蛋白质功能,并可能与疾病相关。为此,我们开发了SIFT算法,这是一种预测氨基酸取代是否会影响蛋白质功能的算法。该算法可从SIFT网站(http://blocks.fhcrc.org/sift/SIFT.html),)获得,被研究界广泛使用,并经常被用作类似预测算法的基准。SIFT和其他类似工具的流行强调了分析编码变体并确定它们中哪些最有可能产生表型效应的优先顺序的必要性。此外,DNA测序技术的进步正在产生大量的变异,包括SNPs和Indels,它们将需要分析。我们建议通过开发一种算法来扩展SIFT,该算法将预测哪些小编码INDel影响蛋白质功能,从而可能参与疾病。此外,我们建议增强SIFT对编码变体进行大规模分析的能力。这些新功能将被整合到SIFT网络服务器中,以实现全基因组分析。可执行文件和代码也将免费提供给研究界。DNA测序技术的最新进展正在产生大量的遗传变异,需要进行分析。小插入和小缺失(Indels)是常见的变异类型,23%的与疾病相关的变异是由Indels引起的。为了更好地识别疾病变体,我们建议扩展我们现有的算法SIFT,使其能够预测影响蛋白质功能的小编码Indels。此外,我们建议增强SIFT对编码变体进行大规模分析的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sean Murphy其他文献

Sean Murphy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sean Murphy', 18)}}的其他基金

Utilization of Fasting Mimicking Diets to Treat and Prevent Clear Cell Renal Cell Carcinoma
利用模拟禁食饮食治疗和预防透明细胞肾细胞癌
  • 批准号:
    10529914
  • 财政年份:
    2022
  • 资助金额:
    $ 29.82万
  • 项目类别:
Utilization of Fasting Mimicking Diets to Treat and Prevent Clear Cell Renal Cell Carcinoma
利用模拟禁食饮食治疗和预防透明细胞肾细胞癌
  • 批准号:
    10662541
  • 财政年份:
    2022
  • 资助金额:
    $ 29.82万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了