Simulation algorithms for genome-wide data and application to admixed data
全基因组数据的模拟算法及其在混合数据中的应用
基本信息
- 批准号:7653629
- 负责人:
- 金额:$ 30.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-16 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdmixtureAffectAfrican AmericanAge related macular degenerationAlgorithmsCaliforniaChromosomesComplexComputer SimulationComputer softwareDNA ResequencingDataData AnalysesData SetDiabetic RetinopathyDiseaseDisease susceptibilityEuropeanExperimental DesignsEyeFundingFutureGene ConversionGeneticGenetic RecombinationGenomeGenotypeGlaucomaGoalsHispanicsHumanHuman GeneticsIndividualLatinoLinkage DisequilibriumLos AngelesMapsMethodologyMethodsModelingNative AmericansNavajoPatternPhenotypePopulationPopulation ControlPopulation GrowthPredispositionPropertyResearchResearch DesignResearch PersonnelResourcesSample SizeScanningSimulateStratificationStructureTestingTimeUniversitiesVariantVisionWorkabstractinganalytical methodbasecostdensitydesigngenetic variantgenome wide association studygenome-wideinterestmethod developmentnovelsimulationtooluser friendly software
项目摘要
DESCRIPTION (Proposal abstract): One of the main goals of human genetics is to identify the genetic variants that affect susceptibility to complex, non-Mendelian diseases. A common approach is association mapping, whereby researchers genotype many markers to find those correlated with the phenotype of interest. These markers may not affect disease susceptibility themselves, but are likely to be in strong linkage disequilibrium (LD) with causative markers. One essential tool in the planning and analysis of association studies is computer simulation. Simulations help researchers compare competing experimental designs, and aid in the interpretation of any associations that are found. Despite this importance, there is a lack of proven simulation methods that are appropriate for the genome-wide data sets now being produced. For those methods that do exist, no attempt has been made to test whether the data produced accurately reflects the properties of observed data, or whether their use for power studies introduces a bias in terms of the final estimates of power. In this proposal, we focus on developing methods for simulating whole chromosome genetic data and for analyzing whole-genome association study data. We will test the accuracy of these methods on publicly available data as well as on genotype data collected by our collaborators at the University of Southern California. We will concentrate on how to analyze data from admixed populations such as Latinos, where population stratification makes most existing analytical methods inappropriate. This work will also help us determine the marker density and sample size needed for future association studies.
描述(建议摘要):人类遗传学的主要目标之一是确定影响对复杂的非孟德尔疾病易感性的遗传变异。一种常见的方法是关联作图,研究人员通过对许多标记进行基因分型来找到与感兴趣的表型相关的标记。这些标记本身可能不影响疾病易感性,但很可能与致病标记处于强连锁不平衡(LD)。规划和分析关联性研究的一个重要工具是计算机模拟。模拟帮助研究人员比较相互竞争的实验设计,并帮助解释发现的任何关联。尽管这很重要,但目前还缺乏适用于目前正在生产的全基因组数据集的经过验证的模拟方法。对于那些确实存在的方法,没有人试图测试产生的数据是否准确地反映了观测数据的性质,或者它们用于功率研究是否在最终估计功率方面引入了偏差。在这个建议中,我们专注于开发模拟全染色体遗传数据和分析全基因组关联研究数据的方法。我们将在公开可用的数据以及我们在南加州大学的合作者收集的基因数据上测试这些方法的准确性。我们将专注于如何分析来自混合人口的数据,例如拉丁裔,那里的人口分层使大多数现有的分析方法不合适。这项工作还将帮助我们确定未来相关性研究所需的标记密度和样本量。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY D WALL其他文献
JEFFREY D WALL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY D WALL', 18)}}的其他基金
Estimating fine scale changes in recombination rates across species
估计物种间重组率的精细变化
- 批准号:
9115662 - 财政年份:2015
- 资助金额:
$ 30.17万 - 项目类别:
Estimating fine scale changes in recombination rates across species
估计物种间重组率的精细变化
- 批准号:
8936876 - 财政年份:2015
- 资助金额:
$ 30.17万 - 项目类别:
Simulation algorithms for genome-wide data and application to admixed data
全基因组数据的模拟算法及其在混合数据中的应用
- 批准号:
7323055 - 财政年份:2007
- 资助金额:
$ 30.17万 - 项目类别:
Simulation algorithms for genome-wide data and application to admixed data
全基因组数据的模拟算法及其在混合数据中的应用
- 批准号:
7485116 - 财政年份:2007
- 资助金额:
$ 30.17万 - 项目类别:
相似海外基金
Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
- 批准号:
10818088 - 财政年份:2023
- 资助金额:
$ 30.17万 - 项目类别:
Admixture Mapping of Coronary Heart Disease and Associated Metabolomic Markers in African Americans
非裔美国人冠心病和相关代谢组标记物的混合图谱
- 批准号:
10571022 - 财政年份:2023
- 资助金额:
$ 30.17万 - 项目类别:
Whole Genome Sequencing and Admixture Analyses of Neuropathologic Traits in Diverse Cohorts in USA and Brazil
美国和巴西不同群体神经病理特征的全基因组测序和混合分析
- 批准号:
10590405 - 财政年份:2023
- 资助金额:
$ 30.17万 - 项目类别:
NSF Postdoctoral Fellowship in Biology: Coalescent Modeling of Sex Chromosome Evolution with Gene Flow and Analysis of Sexed-versus-Gendered Effects in Human Admixture
NSF 生物学博士后奖学金:性染色体进化与基因流的合并模型以及人类混合中性别与性别效应的分析
- 批准号:
2305910 - 财政年份:2023
- 资助金额:
$ 30.17万 - 项目类别:
Fellowship Award
Admixture mapping of mosaic copy number alterations for identification of cancer drivers
用于识别癌症驱动因素的马赛克拷贝数改变的混合图谱
- 批准号:
10608931 - 财政年份:2022
- 资助金额:
$ 30.17万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10656719 - 财政年份:2022
- 资助金额:
$ 30.17万 - 项目类别:
Genealogical ancestors, admixture, and population history
家谱祖先、混合和人口历史
- 批准号:
2116322 - 财政年份:2021
- 资助金额:
$ 30.17万 - 项目类别:
Standard Grant
Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
- 批准号:
10307040 - 财政年份:2021
- 资助金额:
$ 30.17万 - 项目类别:
Admixture analysis of acute lymphoblastic leukemia in African American children: the ADMIRAL Study
非裔美国儿童急性淋巴细胞白血病的混合分析:ADMIRAL 研究
- 批准号:
10307680 - 财政年份:2021
- 资助金额:
$ 30.17万 - 项目类别: