Optical Imaging Fused with Tomosynthesis for Improved Breast Cancer

光学成像与断层合成相结合可改善乳腺癌

基本信息

  • 批准号:
    7655067
  • 负责人:
  • 金额:
    $ 61.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-05-01 至 2014-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This application responds to Program Announcement Number PAR-07-214 (Academic-Industrial Partnerships for Development and Validation of In Vivo Imaging Systems and Methods for Cancer Investigations) by proposing a 3-way partnership between Dartmouth, University of Massachusetts (UMass) Medical School and Hologic, Inc (Bedford, MA) to develop and validate a new fusion technology for breast imaging - Near Infrared (NIR) spectral tomography (NIRST) integrated with breast tomosynthesis (BTS). The goal is to create a single exam platform that will synergistically combine the functional parameters obtained through NIRST with the high resolution 3D structural information available from BTS to enable diagnostic decisions that exhibit superior ROC characteristics and substantially improved PPVs over current call-back and diagnostic practices associated with breast cancer surveillance. The project capitalizes on the significant technical, clinical and commercial strengths of its three partners. Specifically, Dartmouth provides more than a decade of experience in the development of advanced concepts for application of NIRST in breast imaging including forms that have been successfully fused with other conventional imaging modalities. Dartmouth has also participated as a leading institution in early clinical studies of BTS with the Hologic system. UMass brings accomplishments and expertise in the x-ray physics of breast imaging that includes the development of significant advances in system hardware as well as image processing and reconstruction algorithms which are pivotal to the proposed studies. Hologic, Inc, is the commercial leader in the development of the most advanced BTS technology, has extensive experience in the design and conduct of BTS evaluative clinical trials and is poised to release commercially its second generation system which is expected to gain FDA approval in the near future. The specific aims of the project are: (1) to develop a fusion of NIRST and BTS that progresses to a fully integrated platform where the optical imaging technology is permanently in place during BTS imaging; (2) to develop the x-ray image segmentation and concomitant reconstruction algorithms for defining breast parenchymal patterns as structural priors for NIR image formation; (3) to optimize and characterize the most promising hardware and software outcomes from Aim 1 and Aim 2 and evaluate them in phantoms and early-stage clinical exams to establish feasibility and refine their capabilities in the form of two identical prototypes; (4) to conduct a two- center clinical study designed to demonstrate the validity of the proposed fusion platform and establish the clinical potential of the approach. PUBLIC HEALTH RELEVANCE: Screen-film mammography is an effective method for detecting breast cancer and is the only technique proven to reduce mortality from the disease; however, its limitations are well known and include low sensitivity and positive predictive value, largely caused by the overlap of normal parenchymal tissues in the mammogram, especially in the dense breast. The goal of the proposed project, which represents a three-way academic- industrial partnership, is to create an innovative fusion of Near Infrared (NR) spectral tomography (NIRST) with breast tomosynthesis (BTS) that has been demonstrated to be (i) sufficiently robust with respect to clinical workflow to have been deployed in a two-center clinical study, (ii) validated in terms of its clinical potential to add diagnostic value over BTS alone and (iii) ready for much larger-scale multi-center evaluative clinical trials sufficient for generating the data required for gaining FDA approval.
描述(申请人提供):此应用程序响应计划公告编号PAR-07-214(用于癌症研究的体内成像系统和方法的开发和验证的学术-工业伙伴关系),提出达特茅斯、马萨诸塞州大学(UMass)医学院和Hologic公司之间的三方合作伙伴关系(贝德福德,马萨诸塞州)开发和验证一种用于乳腺成像的新融合技术-近红外(NIR)光谱断层扫描(NIRST)与乳腺断层合成(BTS)集成。目标是创建一个单一的检查平台,该平台将协同联合收割机将通过NIRST获得的功能参数与BTS提供的高分辨率3D结构信息相结合,以实现诊断决策,该诊断决策显示出上级ROC特征,并大大改善了与乳腺癌监测相关的当前回调和诊断实践的PPV。该项目充分利用了三个合作伙伴的技术、临床和商业优势。具体而言,达特茅斯在开发NIRST在乳腺成像中应用的先进概念方面拥有十多年的经验,包括已成功与其他传统成像方式融合的形式。达特茅斯还作为领先机构参与了使用Hologic系统进行BTS的早期临床研究。马萨诸塞大学带来了成就和专业知识,在X射线物理学的乳房成像,其中包括系统硬件以及图像处理和重建算法,这是关键的拟议研究的显着进步的发展。Hologic,Inc是开发最先进BTS技术的商业领导者,在设计和进行BTS评价性临床试验方面拥有丰富的经验,并准备在不久的将来商业发布其第二代系统,预计将获得FDA批准。该项目的具体目标是:(1)开发一种融合近红外扫描技术和BTS的技术,发展成为一个完全集成的平台,在BTS成像过程中,光学成像技术永久到位;(2)开发X射线图像分割和伴随的重建算法,用于将乳腺实质模式定义为近红外成像的结构先验;(3)优化和表征目标1和目标2中最有前途的硬件和软件成果,并在体模和早期临床检查中对其进行评估,以建立可行性并以两个相同原型的形式改进其能力;(4)进行一项双中心临床研究,旨在证明所提出的融合平台的有效性,并确立该方法的临床潜力。公共卫生关系:屏片乳腺X线摄影是检测乳腺癌的有效方法,也是唯一被证明可以降低乳腺癌死亡率的技术;然而,其局限性是众所周知的,包括灵敏度低和阳性预测值低,这主要是由于乳腺X线摄影中正常实质组织的重叠,特别是在致密乳腺中。所提出的项目代表了三方学术-工业合作伙伴关系,其目标是创建近红外(NR)光谱断层扫描(NIRST)与乳腺断层合成(BTS)的创新融合,该融合已被证明(i)在临床工作流程方面足够稳健,已部署在双中心临床研究中,(ii)在其临床潜力方面得到验证,以增加对单独BTS的诊断价值,以及(iii)准备好进行大规模多中心评价性临床试验,足以生成获得FDA批准所需的数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KEITH D. PAULSEN其他文献

KEITH D. PAULSEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KEITH D. PAULSEN', 18)}}的其他基金

Training in Surgical Innovation
外科创新培训
  • 批准号:
    10205062
  • 财政年份:
    2017
  • 资助金额:
    $ 61.02万
  • 项目类别:
Training in Surgical Innovation
外科创新培训
  • 批准号:
    9280049
  • 财政年份:
    2017
  • 资助金额:
    $ 61.02万
  • 项目类别:
Optical Scatter Imaging System for Surgical Specimen Margin Assessment during Breast Conserving Surgery
光学散射成像系统用于保乳手术中手术标本边缘评估
  • 批准号:
    8840807
  • 财政年份:
    2015
  • 资助金额:
    $ 61.02万
  • 项目类别:
Optical Scatter Imaging System for Surgical Specimen Margin Assessment during Breast Conserving Surgery
光学散射成像系统用于保乳手术中手术标本边缘评估
  • 批准号:
    9020962
  • 财政年份:
    2015
  • 资助金额:
    $ 61.02万
  • 项目类别:
Optical Scatter Imaging System for Surgical Specimen Margin Assessment during Breast Conserving Surgery
光学散射成像系统用于保乳手术中手术标本边缘评估
  • 批准号:
    9211221
  • 财政年份:
    2015
  • 资助金额:
    $ 61.02万
  • 项目类别:
CRCNS-US-German research collaboration on functional neuro-poroelastography
CRCNS-美国-德国功能性神经孔隙弹性成像研究合作
  • 批准号:
    8837214
  • 财政年份:
    2014
  • 资助金额:
    $ 61.02万
  • 项目类别:
CRCNS-US-German research collaboration on functional neuro-poroelastography
CRCNS-美国-德国功能性神经孔隙弹性成像研究合作
  • 批准号:
    9121345
  • 财政年份:
    2014
  • 资助金额:
    $ 61.02万
  • 项目类别:
Spectrally optimized, Spatially resolved Poro and Viscoelastic Brain MRE
光谱优化、空间分辨的 Poro 和粘弹性脑 MRE
  • 批准号:
    8738671
  • 财政年份:
    2013
  • 资助金额:
    $ 61.02万
  • 项目类别:
Molecular Fluorescence-Guided Surgery Platform
分子荧光引导手术平台
  • 批准号:
    8649029
  • 财政年份:
    2013
  • 资助金额:
    $ 61.02万
  • 项目类别:
Spectrally optimized, Spatially resolved Poro and Viscoelastic Brain MRE
光谱优化、空间分辨的 Poro 和粘弹性脑 MRE
  • 批准号:
    8660174
  • 财政年份:
    2013
  • 资助金额:
    $ 61.02万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.02万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 61.02万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 61.02万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 61.02万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 61.02万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 61.02万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 61.02万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 61.02万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 61.02万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 61.02万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了