A Platform for Cancer Biomarker Validation: Image Fusion Using NIR Fluorescence
癌症生物标志物验证平台:使用近红外荧光的图像融合
基本信息
- 批准号:7583121
- 负责人:
- 金额:$ 74.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-02-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAntibodiesBiological MarkersBlood VesselsBostonCancer PatientChronicClinicalClinical ResearchComplexData SetData Storage and RetrievalDetectionEpithelialEvaluationExcisionFluorescenceFoundationsFrequenciesGadoliniumGenetic MarkersGenitourinary systemGenotypeGlandGleason Grade for Prostate CancerGoalsGoldHematoxylin and Eosin Staining MethodHistologyHumanImageImage EnhancementIndividualInjection of therapeutic agentInterobserver VariabilityInterventionIsraelLaboratoriesLymphaticMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of prostateMedical centerMicroscopeMicroscopicMorphologic artifactsNodulePathologistPattern RecognitionPhenotypePositron-Emission TomographyPostoperative PeriodPreparationProblem SolvingProcessProstateProstatectomyRadical ProstatectomyResearchResectedResolutionResourcesSamplingScanningSignal TransductionSliceSlideSpecimenStagingStaining methodStainsTechnologyThree-dimensional analysisTimeTissue BankingTissue BanksTissue ExpansionTissuesTrainingValidationWorkX-Ray Computed Tomographybasecancer cellcancer imagingcancer typeergonomicsfluorescence imagingfluorophoreimaging Segmentationinnovationinterestmenpublic health relevanceradiotracerresearch studysample fixationsingle photon emission computed tomographyskillssoftware developmentstandard of caretissue processing
项目摘要
DESCRIPTION (provided by applicant): Clinical imaging using magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and/or single-photon emission computed tomography (SPECT) is the standard of care for the detection and staging of human cancer. However, clinical imaging is a macroscopic process, with up to 106 malignant cells filling every 1 mm3 voxel. At present, it is extremely difficult to correlate clinical imaging findings with the cellular genotype and/or phenotype leading to the finding. Hence, "biomarkers," such as dynamic contrast enhancement (DCE) on MRI, or a "hot" voxel on PET seen after injection of a targeted radiotracer, are difficult to validate since the fusion of macroscopic clinical imaging findings with microscopic histological findings is fraught with technical challenges. To solve this problem, our laboratory has developed new near-infrared (NIR) fluorescence technology that permits simultaneous (same slide) immunostaining and hematoxylin/eosin (H&E) staining of any pathological specimen. Hence, the chronic problem of co-registering tissue slices at the cellular level is eliminated, while the "gold-standard" of H&E histology is preserved. This technology lays the foundation for an integrated platform that permits high accuracy co-registration of macroscopic and microscopic data sets from an individual patient's cancer. We have also developed an automated microscope that acquires H&E and NIR fluorescence simultaneously, and which permits up to 28 2"x3" whole-mount slides (or 56 1"x3" slides) to be scanned without human intervention. Using this technology, and several other innovations described in the application, 3-D data sets of clinical pathological specimens, at microscopic resolution, can now be generated. However, to bridge the gap between the microscopic and macroscopic domains, we have formed an academic-industrial partnership with the Imaging Department of Siemens Corporate Research (SCR) in Princeton, NJ. SCR is expert in the co-registration of 3-D volumes that have undergone non-linear deformations, in image segmentation, and in pattern recognition. Using algorithms developed by SCR for this study, we present an automated and integrated platform for cancer biomarker validation. Our study also leverages a unique clinical resource at the Beth Israel Deaconess Medical Center, the Hershey Prostate Cancer Tissue Bank. Through the Hershey Tissue Bank, men undergoing radical prostatectomy for prostate cancer receive a preoperative endorectal coil 3T MRI (pre- and post-Gd DCE), and at prostatectomy, the entire gland is available for whole-mount preparation. The paired data sets of clinical imaging (DCE-MRI) and whole mount histology will provide proof of principle for our biomarker validation platform, and will also be used to determine the mechanism of DCE-MRI at the cellular level. Completion of the specific aims by academic and industrial teams with complementary skill sets will permit virtually any proposed biomarker, for any type of cancer, to be validated rapidly and efficiently. PUBLIC HEALTH RELEVANCE: Biomarkers for cancer imaging are extremely difficult to validate, since clinical imaging is performed on a macroscopic scale and histological evaluation of resected tissue is performed on a microscopic scale. We have formed an academic-industrial partnership between the Frangioni Laboratory at the Beth Israel Deaconess Medical Center in Boston, MA and Siemens Corporate Research in Princeton, NJ aimed at developing an integrated platform for biomarker validation using new near-infrared fluorescence and image fusion technology. This study also leverages a unique prostate cancer tissue bank that provides paired DCE-MRI and histological whole mounts from individual prostate cancer patients.
描述(由申请人提供):使用磁共振成像(MRI),计算机断层扫描(CT),正电子发射断层扫描(PET)和/或单光子发射计算机断层扫描(SPECT)的临床成像是人类癌症检测和分期的护理标准。然而,临床成像是一个宏观过程,每1mm3体素就有多达106个恶性细胞。目前,将临床影像学发现与导致该发现的细胞基因型和/或表型相关联是极其困难的。因此,“生物标志物”,如MRI上的动态对比增强(DCE),或注射靶向放射性示踪剂后在PET上看到的“热”体素,很难验证,因为宏观临床成像结果与微观组织学结果的融合充满了技术挑战。为了解决这一问题,我们实验室开发了新的近红外(NIR)荧光技术,可以同时(同一载玻片)对任何病理标本进行免疫染色和苏木精/伊红(H&E)染色。因此,消除了在细胞水平上组织切片共登记的慢性问题,同时保留了H&E组织学的“金标准”。这项技术为一个集成平台奠定了基础,该平台允许从单个患者的癌症中高精度地共同注册宏观和微观数据集。我们还开发了一种自动显微镜,可同时获取H&E和近红外荧光,并允许在没有人为干预的情况下扫描多达28个2“x3”整片载玻片(或56个1“x3”载玻片)。使用这项技术,以及应用程序中描述的其他一些创新,现在可以生成显微分辨率的临床病理标本的3-D数据集。然而,为了弥合微观和宏观领域之间的差距,我们与位于新泽西州普林斯顿的西门子公司研究成像部门(SCR)建立了学术-工业合作伙伴关系。SCR在非线性变形的三维体的共配准、图像分割和模式识别方面是专家。利用SCR为本研究开发的算法,我们提出了一个自动化和集成的癌症生物标志物验证平台。我们的研究还利用了贝斯以色列女执事医疗中心的独特临床资源——好时前列腺癌组织库。通过好时组织库,接受前列腺癌根治性前列腺切除术的男性术前接受直肠内线圈3T MRI (gd前和gd后的DCE),在前列腺切除术时,整个腺体可用于全挂载准备。临床成像(DCE-MRI)和整个mount组织学的配对数据集将为我们的生物标志物验证平台提供原理证明,也将用于确定DCE-MRI在细胞水平上的机制。学术和工业团队通过互补的技能完成特定目标,将允许几乎任何提出的生物标志物,针对任何类型的癌症,快速有效地进行验证。公共卫生相关性:癌症成像的生物标志物极难验证,因为临床成像是在宏观尺度上进行的,而对切除组织的组织学评估是在微观尺度上进行的。我们已经与马萨诸塞州波士顿Beth Israel Deaconess医疗中心的Frangioni实验室和新泽西州普林斯顿的西门子公司研究中心建立了一个学术-工业合作伙伴关系,旨在利用新的近红外荧光和图像融合技术开发生物标志物验证的集成平台。本研究还利用了一个独特的前列腺癌组织库,提供配对的DCE-MRI和来自个体前列腺癌患者的组织学整体标本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John V Frangioni其他文献
Self-illuminating quantum dots light the way
自发光量子点照亮道路
- DOI:
10.1038/nbt0306-326 - 发表时间:
2006-03-01 - 期刊:
- 影响因子:41.700
- 作者:
John V Frangioni - 通讯作者:
John V Frangioni
John V Frangioni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John V Frangioni', 18)}}的其他基金
ZW800-1: The 1st Zwitterionic NIR Fluorophore for Cancer Imaging & Ureter Mapping
ZW800-1:第一个用于癌症成像的两性离子近红外荧光团
- 批准号:
9254979 - 财政年份:2016
- 资助金额:
$ 74.59万 - 项目类别:
Mediastinal Lymph Node Identification in Lung Cancer using NIR Fluorescent VATS
使用近红外荧光 VATS 识别肺癌纵隔淋巴结
- 批准号:
9239732 - 财政年份:2016
- 资助金额:
$ 74.59万 - 项目类别:
Mediastinal Lymph Node Identification in Lung Cancer using NIR Fluorescent VATS
使用近红外荧光 VATS 识别肺癌纵隔淋巴结
- 批准号:
10061561 - 财政年份:2016
- 资助金额:
$ 74.59万 - 项目类别:
ZW800-1: The 1st Zwitterionic NIR Fluorophore for Cancer Imaging & Ureter Mapping
ZW800-1:第一个用于癌症成像的两性离子近红外荧光团
- 批准号:
10190845 - 财政年份:2016
- 资助金额:
$ 74.59万 - 项目类别:
ZW800-1: The 1st Zwitterionic NIR Fluorophore for Cancer Imaging & Ureter Mapping
ZW800-1:第一个用于癌症成像的两性离子近红外荧光团
- 批准号:
10408716 - 财政年份:2016
- 资助金额:
$ 74.59万 - 项目类别:
Real-Time Flap Viability Monitoring during Facial Transplantation using SFDI
使用 SFDI 进行面部移植期间实时皮瓣活力监测
- 批准号:
9011224 - 财政年份:2015
- 资助金额:
$ 74.59万 - 项目类别:
(PQC-5) Zwitterionic NIR/Zr-89 Agents for Prostate Cancer Staging and Treatment
(PQC-5) 用于前列腺癌分期和治疗的两性离子 NIR/Zr-89 试剂
- 批准号:
8687138 - 财政年份:2014
- 资助金额:
$ 74.59万 - 项目类别:
Real-Time Flap Viability Monitoring during Facial Transplantation using SFDI
使用 SFDI 进行面部移植期间实时皮瓣活力监测
- 批准号:
8438170 - 财政年份:2013
- 资助金额:
$ 74.59万 - 项目类别:
Real-Time Flap Viability Monitoring during Facial Transplantation using SFDI
使用 SFDI 进行面部移植期间实时皮瓣活力监测
- 批准号:
8588307 - 财政年份:2013
- 资助金额:
$ 74.59万 - 项目类别:
SPATIALLY-MODULATED NEAR-INFRARED LIGHT FOR IMAGE-GUIDED ONCOLOGIC SURGERY
用于图像引导肿瘤手术的空间调制近红外光
- 批准号:
8362635 - 财政年份:2011
- 资助金额:
$ 74.59万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 74.59万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 74.59万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 74.59万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 74.59万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 74.59万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 74.59万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 74.59万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 74.59万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 74.59万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 74.59万 - 项目类别:
Continuing Grant