Understanding and Engineering Chemically Activated Ubiquitin Ligases
了解和设计化学激活的泛素连接
基本信息
- 批准号:10713454
- 负责人:
- 金额:$ 36.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-22 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AgricultureAnabolismAnimalsBiological AssayBiologyBiomanufacturingBiomedical EngineeringBiosensorBlood VesselsCell Cycle RegulationCellsChemical EngineeringChemicalsDevelopmentDiseaseEngineeringEnvironmentEnzymesEukaryotaEvolutionFoodGenetic TranscriptionGrowthHormone ResponsiveHormonesHumanIndustrializationInflammationMalignant NeoplasmsMetabolicMetabolic DiseasesMicrobeMolecularNeurodegenerative DisordersPathway interactionsPeptidesPharmacologic SubstancePhysiologyPlant Growth RegulatorsPlantsPlayProcessProtein EngineeringProteinsProteomeRecyclingResearchRoleSignal PathwaySignal TransductionSignaling ProteinStressSystemUbiquitinbiological systemsdietary supplementsfungushormonal signalshuman diseaseimprovedinsightmanufacturemulticatalytic endopeptidase complexmutation screeningnovelpathogenpreventprogramsprotein degradationscaffoldtooltranscription factorubiquitin ligase
项目摘要
Project Summary/Abstract
The objectives of my research program are to understand and engineer protein degradation by the
ubiquitin-proteasome system—a critical signaling mechanisms that all animals, plants, and fungi use
to perceive and adapt to their environment. The ubiquitin-proteasome system acts like the recycling
system of the cell, where specific proteins are marked for recycling by ubiquitin and are cut into
peptides by the proteasome to be further broken down and made into new proteins. The ability of the
ubiquitin-proteasome pathway to remodel a cell’s proteome in a rapid and specific way has perhaps
led to its ubiquity throughout the evolution of eukaryotes. The strong conservation of ubiquitin in
eukaryotes also makes it a prime candidate for engineering control systems in biology. The ubiquitin-
proteasome machinery in humans is frequently implicated in cancers, neurodegenerative diseases,
and metabolic disorders among other diseases, due to it is involvement in cell cycle regulation,
vascular development, and inflammation, among other critical processes. By improving our
understanding of how the ubiquitin-proteasome pathway functions or fails to function, we may
uncover new ways to treat or prevent human disease. The ubiquitin-proteasome pathway plays
perhaps an even more central role in plants where it is involved in nearly all known plant hormone
signaling pathways to coordinate their growth and respond to changes in their environment, including
stresses such as pests and pathogens. These chemical hormones activate ubiquitin ligases which
trigger degradation of repressive transcription factors leading to activation of hormone-responsive
gene transcription. Interestingly, animals and microbes also perceive plant hormones which have
wide ranging effects on their physiology. Animals and microbes also produce plant hormones or
similar molecules to aberrantly activate ubiquitin-proteasome signaling and manipulate plants for their
benefit. Our research aims to understand the molecular mechanism of how information is transferred
through these ubiquitin-proteasome signaling pathways and how these hormone-signaling and
biosynthesis pathways have coevolved in plants and other eukaryotes. To do this we will use a deep
mutational scanning approach enabled by a massively parallel functional assays using a biosensor
we recently developed. In parallel, we aim to re-engineer these chemically activated ubiquitin ligases
to detect related and potentially novel chemical compounds and to act as rapid metabolic controllers.
These molecular tools will improve our ability to control and engineer biological systems and
sustainably biomanufacture these plant hormones and related chemicals, including important
agricultural and industrial chemicals, nutritional supplements, and pharmaceuticals.
项目总结/摘要
我的研究计划的目标是了解和工程蛋白质降解的
泛素-蛋白酶体系统-所有动物,植物和真菌使用的关键信号机制
来感知和适应环境。泛素-蛋白酶体系统的作用类似于
细胞的系统,其中特定的蛋白质被标记为由泛素回收,并被切割成
多肽被蛋白酶体进一步分解并制成新的蛋白质。的能力
泛素-蛋白酶体途径以快速和特异的方式重塑细胞的蛋白质组,
导致了它在真核生物进化过程中的普遍存在。中泛蛋白的高度保守性
真核生物也使其成为生物学中工程控制系统的主要候选者。泛蛋白-
人类的蛋白酶体机制经常与癌症,神经变性疾病,
和代谢紊乱等疾病,由于它参与细胞周期调节,
血管发育和炎症,以及其他关键过程。通过提高我们
了解泛素-蛋白酶体途径如何发挥作用或无法发挥作用,我们可能
发现治疗或预防人类疾病的新方法。泛素-蛋白酶体途径发挥着
也许在植物中起着更重要的作用,它几乎参与了所有已知的植物激素
信号通路来协调它们的生长和应对环境的变化,包括
压力,如害虫和病原体。这些化学激素激活泛素连接酶,
触发抑制性转录因子的降解,从而激活对转录因子的应答。
基因转录有趣的是,动物和微生物也能感知植物激素,
对他们的生理产生广泛的影响。动物和微生物也产生植物激素,
类似的分子异常激活泛素-蛋白酶体信号传导,并操纵植物,
效益我们的研究旨在了解信息传递的分子机制
通过这些泛素-蛋白酶体信号通路,以及这些泛素-蛋白酶体信号通路和
生物合成途径在植物和其他真核生物中共同进化。为此,我们将使用一个
通过使用生物传感器的大规模并行功能测定实现的突变扫描方法
我们最近开发的。同时,我们的目标是重新设计这些化学活化的泛素连接酶,
以检测相关的和潜在的新化合物,并作为快速代谢控制器。
这些分子工具将提高我们控制和设计生物系统的能力,
可持续地生物制造这些植物激素和相关化学品,包括重要的
农业和工业化学品、营养补充剂和药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Clay Wright其他文献
Robert Clay Wright的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 36.9万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 36.9万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 36.9万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 36.9万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 36.9万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 36.9万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 36.9万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 36.9万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 36.9万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 36.9万 - 项目类别:
Discovery Early Career Researcher Award