Integrated modeLs for Early Risk-prediction in Africa (ILERA) study
非洲早期风险预测综合模型 (ILERA) 研究
基本信息
- 批准号:10712951
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdipose tissueAfricaAfricanAgeBloodBlood PressureBody mass indexBurkina FasoCardiometabolic DiseaseCategoriesCessation of lifeCholesterolCollaborationsCommunicable DiseasesComplexCountryDataData CollectionData ScienceData SetDiastolic blood pressureDietDiseaseDisease OutcomeDrug TargetingDrug usageEnvironmentEuropeanEvaluationExerciseGene ExpressionGenerationsGenetic RiskGenomicsGenotypeGenotype-Tissue Expression ProjectGhanaGrantHealthHealth PrioritiesHealthcareHigh Density LipoproteinsHypertensionIndividualIndustrializationKenyaKidney DiseasesLife StyleLipidsLongevityLow-Density LipoproteinsMedical centerMethodsModelingObesityParticipantPopulationPulse RatesQuality of lifeRenal functionResearchResource-limited settingRiskScienceSmokingSocioeconomic StatusSouth AfricaSouth AfricanSystemTechnologyTestingTimeTriglyceridesUniversitiesVariantVisceralWaist-Hip RatioWhole BloodWitZimbabweage relatedbiomarker identificationcohortdeep learningdisorder riskexperiencefunctional genomicsgenome resourcegenome wide association studygenome-widegenomic datahigh riskimprovedindustry partnerinsightmultiple omicsnon-geneticnovelpolygenic risk scorepopulation basedpopulation stratificationpredictive modelingprematurepublic health interventionrisk predictionrisk prediction modelstatisticssubcutaneoustraittranscriptometranscriptome sequencingtranscriptomicstranslational potentialwhole genome
项目摘要
Project Summary
Cardiometabolic diseases (CMDs) claim millions of lives in Africa every year and a sizable portion of these
deaths are premature. Despite the availability of simple and affordable approaches such as lifestyle adjustment
and the use of drugs (e.g. lipid lowering statins) that could increase lifespan and improve the quality of life, this
is becoming a more serious health burden in Africa with time. The ability to prioritize healthcare to the populations
that are at highest risk could be especially relevant in resource constrained environments. One of the major
challenges to accurately stratifying a population by risk is the low predictivity of current polygenic risk scoring
models (PRSs) in African populations.
The Integrated modeLs for Early Risk-prediction in Africa (ILERA) study (Ilera in Yourba means health) aims
to investigate the potential for improving the prediction of 13 cardiometabolic disease indicator levels (and
thereby of CMDs) by integrating diverse types of data (genomic, transcriptomic, lifestyle-related data) into risk
prediction models. Starting with currently best performing PRSs, we plan to progressively add layers of data
such as predicted transcriptomes, environment and lifestyle information to assess whether this additional data,
either independently or in combination with others, could improve prediction. To allow for complex and non-linear
interactions between these factors, data-driven approaches will be employed to integrate these variables with
the genomic data. In-depth evaluation of the predictivity of these models will be performed in independent cohorts
from South, East and West Africa and also in longitudinal data from the same cohort. The potential for an early
warning system aimed at public health intervention will be investigated using a combination of the best predictive
models and traits.
The project will be led from the University of the Witwatersrand (Wits), collaborating with the Wits Donald Gordon
Medical Center, the African Institute of Biomedical Science and Technology (ABiST) Zimbabwe and an US
based industry partner, Variant Bio. The predicted transcriptome will be based on 750 South African participants
with whole genome sequence and blood transcriptome RNA-Seq. The primary target dataset of ~5000
participants was generated through the H3Africa AWI-Gen study and the models will be tested in two Southern
African datasets (~1200 participants from South Africa and Zimbabwe) as well as ~6000 participants from
Ghana, Burkina Faso and Kenya. Longitudinal data, captured 5 years after baseline data collection, will be used
to understand the impact of age on the predictive models. The study will build on years of existing successful
collaboration and will tap into the Wits experience in genomics research, Variant Bio’s expertise in multi-omics
research and leverage partnership with other projects in the DSI-Africa consortium for data science capacity.
项目概要
心脏代谢疾病 (CMD) 每年夺去非洲数百万人的生命,其中很大一部分
死亡还为时过早。尽管有简单且负担得起的方法,例如生活方式调整
以及使用可以延长寿命和改善生活质量的药物(例如降脂他汀类药物),这
随着时间的推移,正在成为非洲更加严重的健康负担。优先考虑民众医疗保健的能力
风险最高的风险在资源有限的环境中尤其重要。主要之一
按风险准确对人群进行分层的挑战是当前多基因风险评分的低预测性
非洲人群的模型(PRS)。
非洲早期风险预测综合模型 (ILERA) 研究(Ilera 在 Yourba 中的意思是健康)的目标
研究改善 13 种心脏代谢疾病指标水平预测的潜力(以及
通过将不同类型的数据(基因组、转录组、生活方式相关数据)整合到风险中
预测模型。从目前表现最佳的 PRS 开始,我们计划逐步添加数据层
例如预测的转录组、环境和生活方式信息,以评估这些附加数据是否,
无论是独立地还是与其他人结合,都可以改善预测。允许复杂和非线性
这些因素之间的相互作用,将采用数据驱动的方法将这些变量与
基因组数据。这些模型的预测能力将在独立队列中进行深入评估
来自南非、东非和西非以及同一队列的纵向数据。早期的潜力
将结合最佳预测方法对旨在公共卫生干预的预警系统进行调查
模型和特征。
该项目将由金山大学 (Wits) 领导,与金山大学唐纳德·戈登 (Donald Gordon) 合作
医疗中心、津巴布韦非洲生物医学科学技术研究所 (ABiST) 和美国
基础行业合作伙伴 Variant Bio。预测的转录组将基于 750 名南非参与者
具有全基因组序列和血液转录组 RNA-Seq。主要目标数据集约为 5000
参与者是通过 H3Africa AWI-Gen 研究产生的,这些模型将在南部的两个国家进行测试
非洲数据集(约 1200 名来自南非和津巴布韦的参与者)以及约 6000 名来自南非和津巴布韦的参与者
加纳、布基纳法索和肯尼亚。将使用基线数据收集 5 年后捕获的纵向数据
了解年龄对预测模型的影响。该研究将建立在多年现有成功经验的基础上
合作并将利用 Wits 在基因组学研究方面的经验、Variant Bio 在多组学方面的专业知识
研究并利用与 DSI-非洲联盟其他项目的合作伙伴关系来提高数据科学能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ananyo Choudhury其他文献
Ananyo Choudhury的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Deciphering the role of adipose tissue in common metabolic disease via adipose tissue proteomics
通过脂肪组织蛋白质组学解读脂肪组织在常见代谢疾病中的作用
- 批准号:
MR/Y013891/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Research Grant
ESTABLISHING THE ROLE OF ADIPOSE TISSUE INFLAMMATION IN THE REGULATION OF MUSCLE MASS IN OLDER PEOPLE
确定脂肪组织炎症在老年人肌肉质量调节中的作用
- 批准号:
BB/Y006542/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Research Grant
Activation of human brown adipose tissue using food ingredients that enhance the bioavailability of nitric oxide
使用增强一氧化氮生物利用度的食品成分激活人体棕色脂肪组织
- 批准号:
23H03323 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of new lung regeneration therapies by elucidating the lung regeneration mechanism of adipose tissue-derived stem cells
通过阐明脂肪组织干细胞的肺再生机制开发新的肺再生疗法
- 批准号:
23K08293 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Canadian Alliance of Healthy Hearts and Minds: Dissecting the Pathways Linking Ectopic Adipose Tissue to Cognitive Dysfunction
加拿大健康心灵联盟:剖析异位脂肪组织与认知功能障碍之间的联系途径
- 批准号:
479570 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Operating Grants
Determinants of Longitudinal Progression of Adipose Tissue Inflammation in Individuals at High-Risk for Type 2 Diabetes: Novel Insights from Metabolomic Profiling
2 型糖尿病高危个体脂肪组织炎症纵向进展的决定因素:代谢组学分析的新见解
- 批准号:
488898 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Operating Grants
A study on the role of brown adipose tissue in the development and maintenance of skeletal muscles
棕色脂肪组织在骨骼肌发育和维持中作用的研究
- 批准号:
23K19922 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
A mechanism of lipid accumulation in brown adipose tissue
棕色脂肪组织中脂质积累的机制
- 批准号:
10605981 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Obesity and Childhood Asthma: The Role of Adipose Tissue
肥胖和儿童哮喘:脂肪组织的作用
- 批准号:
10813753 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Estrogen Signaling in the Ventromedial Hypothalamus Modulates Adipose Tissue Metabolic Adaptation
下丘脑腹内侧区的雌激素信号调节脂肪组织代谢适应
- 批准号:
10604611 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别: