Molecular mechanisms of aging and accelerated aging in the human brain
人脑衰老和加速衰老的分子机制
基本信息
- 批准号:10713873
- 负责人:
- 金额:$ 84.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAccelerationAdultAgeAgingAutopsyBinding SitesBioinformaticsBiological AssayBrainCOVID-19COVID-19 impactCOVID-19 pandemicCOVID-19 patientCell AgingCognitionCognitive deficitsCoronavirus InfectionsDataDevelopmentDiseaseEnvironmental Risk FactorFunctional disorderFunding OpportunitiesGene ExpressionGene Expression ProfileGene Expression RegulationGenesGenetic TranscriptionGoalsHumanImpaired cognitionIn VitroIndividualInterventionKnowledgeLongevityLuciferasesMapsMeasuresMessenger RNAMicroRNAsMissionMolecularMolecular ProfilingMusNeurodegenerative DisordersNeuronsNeurophysiology - biologic functionNormal tissue morphologyPhenotypePlayProcessPublic HealthPublishingRecording of previous eventsRegulator GenesReporterResearchResearch PersonnelResearch Project GrantsRisk FactorsSite-Directed MutagenesisSmall RNASpatial DistributionTechnologyTestingTherapeuticTissuesUntranslated RNAValidationVentilatorVirusVirus Diseasesadeno-associated viral vectorage effectagedaging braincell typecognitive functiondifferential expressionfrontal lobein vitro Assayin vivoinduced pluripotent stem cellmouse modelneuropathologynew therapeutic targetnovelpreventpromoterresponsesenescencesevere COVID-19single-cell RNA sequencingtherapeutic developmenttranscriptome sequencingtranscriptomics
项目摘要
SUMMARY. This proposal is in response to PAR-21-038: Stephen I. Katz Early Stage Investigator Research
Project Grant. Aging is a major risk factor for the development of cognitive deficits and neurodegenerative
diseases. Understanding the exact molecular mechanisms of brain aging and accelerated brain aging can lead
to the development of novel interventions to delay or potentially reverse brain aging. Environmental factors
including viral infections (such as SARS-CoV-2, the virus that caused the COVID-19 pandemic) have been
shown to be associated with cognitive decline and accelerated brain aging. However, the exact molecular
mechanisms underlying the effects of environmental factors, and specifically COVID-19, on brain aging remain
unknown. Our long-term goal is to identify key factors that induce accelerated brain aging, so that therapeutics
can be developed to delay or reverse brain aging. The overall objective of this proposal is to identify genes and
regulators of gene expression that cause brain aging and accelerated brain aging in COVID-19 patients. Previous
research from our group showed that many microRNAs (miRNAs), which are small non-coding RNAs that induce
an orchestrated regulation of gene expression, are differentially expressed in the aged mouse brain and regulate
aging. Based on those data and our recently published bulk RNA sequencing studies showing molecular
signatures of brain aging in COVID-19 patients, our central hypothesis is that dysregulated gene and miRNA
expression is an important facet of accelerated brain aging. Previous studies using microarray and bulk RNA
sequencing approaches showed that aging induces distinct molecular signatures in the human frontal cortex.
While layer enriched expression signatures have been identified in the human frontal cortex, the spatial
topography of molecular signatures of aging remain largely unknown. Here, we will utilize state-of-the-art spatial
transcriptomic technologies to analyze human frontal cortex sections from healthy individuals across lifespan,
as well as frontal cortex sections from COVID-19 patients (and appropriate controls) to identify spatially distinct
aging-regulated transcriptomic changes. We will investigate the effects of aging-regulated genes on cellular
senescence using in vitro assays. To better understand regulatory mechanisms of aging-regulated gene
expression, we will measure the expression of miRNAs in healthy individuals across lifespan and COVID-19
cases on similar frontal cortex sections and we will identify aging-regulated mRNA targets for candidate miRNAs.
Finally, we will test the potential of miRNAs to accelerate and delay aging using in vitro assays and in vivo mouse
models. These studies are expected to have a significant impact as they will determine novel targets for the
development of therapeutics to delay or reverse brain aging and aging-related neuropathology. This proposal is
highly relevant to public health and to the NIA’s mission of advancing knowledge on the causes of aging
processes and age-associated diseases to extend healthy lifespan.
概括。该建议是对PAR-21-038的回应:Stephen I. Katz早期研究员研究
项目赠款。衰老是认知缺陷和神经退行性发展的主要危险因素
疾病。了解大脑衰老和加速大脑衰老的确切分子机制可以引导
开发新的干预措施以延迟或可能逆转大脑衰老。环境因素
包括病毒感染(例如SARS-COV-2,引起Covid-19大流行的病毒)已是
证明与认知能力下降和加速脑衰老有关。但是,确切的分子
环境因素,特别是共同-19对脑衰老的影响的基础机制仍然存在
未知。我们的长期目标是确定引起加速大脑衰老的关键因素,以便治疗
可以开发以延迟或逆转大脑衰老。该提案的总体目的是确定基因和
在199例患者中导致脑衰老和加速脑老化的基因表达调节剂。以前的
我们小组的研究表明,许多影响的无编码RNA的许多microRNA(miRNA)会影响
在老年小鼠大脑中,精心策划的基因表达调节表达不同,并调节
老化。根据这些数据,我们最近发表的大量RNA测序研究显示了分子
在199例患者中,脑老化的特征是我们的中心假设是基因和miRNA失调
表达是加速大脑衰老的重要方面。先前使用微阵列和大量RNA的研究
测序方法表明,衰老会在人额叶皮层中诱导不同的分子特征。
虽然在人额皮层中已经确定了层富集的表达特征,但空间
衰老的分子特征的地形在很大程度上未知。在这里,我们将利用最先进的空间
转录组技术以分析来自健康个体的人类额叶皮层切片,
以及来自COVID-19患者(和适当对照组)的额叶皮层切片,以识别空间不同的
衰老调节的转录组变化。我们将研究衰老调节基因对细胞的影响
使用体外测定法。更好地了解衰老调节基因的调节机制
表达,我们将测量整个生命周期和Covid-19的健康个体中miRNA的表达
类似的额叶皮层切片的病例,我们将确定候选miRNA衰老调节的mRNA靶标。
最后,我们将测试miRNA的潜力,使用体外测定和体内小鼠加速和延迟衰老
型号。预计这些研究将产生重大影响,因为它们将确定
理论的发展延迟或逆转大脑衰老和与衰老有关的神经病理学。该提议是
与公共卫生高度相关以及NIA的使命是促进有关衰老原因的知识
过程和与年龄相关的疾病延长健康的寿命。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Mavrikaki其他文献
Maria Mavrikaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
- 批准号:
10711136 - 财政年份:2023
- 资助金额:
$ 84.2万 - 项目类别:
Impact of obesity on SARS-CoV-2 infection and reciprocal effects of SARS-CoV-2 on metabolic disease
肥胖对 SARS-COV-2 感染的影响以及 SARS-COV-2 对代谢疾病的相互影响
- 批准号:
10583175 - 财政年份:2023
- 资助金额:
$ 84.2万 - 项目类别:
A randomized controlled trial of smell training and trigeminal nerve stimulation in the treatment of COVID-related persistent smell loss
嗅觉训练和三叉神经刺激治疗新冠病毒相关持续性嗅觉丧失的随机对照试验
- 批准号:
10718703 - 财政年份:2023
- 资助金额:
$ 84.2万 - 项目类别:
COVID-19 related inflammation as a risk factor for age-related cognitive decline and Alzheimer's Disease
COVID-19 相关炎症是与年龄相关的认知能力下降和阿尔茨海默病的危险因素
- 批准号:
10646590 - 财政年份:2023
- 资助金额:
$ 84.2万 - 项目类别:
Research Resources and Workforce Development for the Rocky Mountain Regional Biocontainment Laboratory at Colorado State University
科罗拉多州立大学落基山区域生物防护实验室的研究资源和劳动力发展
- 批准号:
10793907 - 财政年份:2023
- 资助金额:
$ 84.2万 - 项目类别: