Transformative lightsheet microscopy techniques for subcellular imaging in physiologically relevant 3D environments

用于生理相关 3D 环境中亚细胞成像的变革性光片显微镜技术

基本信息

  • 批准号:
    10712248
  • 负责人:
  • 金额:
    $ 35.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Abstract Optical imaging enables fast and minimally invasive observation of biological processes within living cells and organisms. However, current state-of-the-art imaging instruments have limitations in acquisition speed, spatial resolution and light-penetration depth that restrict the types of biological questions that can be addressed. This is particularly problematic for biological samples that span several orders of magnitude in spatiotemporal scale. For example, cell-cell interactions within the tumor microenvironment and their response to treatment can occur over seconds to days and be heterogeneous throughout an entire tissue volume. Coupling these physiological outcomes to the underlying molecular mechanisms (and potential therapeutic targets) requires a transformation in not only the technologies we use, but also the combination of methods to cross the spatiotemporal scales from cells to tissues. Recent developments in emerging techniques like cleared-tissue-imaging coupled with lightsheet microscopy (LSM) has enabled researchers to probe deeper into the tissue without needing to section them. Illumination with lightsheet offers a much faster and less phototoxic alternative in comparison to point scanning microscopes. However, all LSM (including Lattice lightsheet) struggled with a number of fundamental limitations: (a) the maximum number of possible labels that can be imaged, (b) the size of the samples that they can handle, and, (c) poor spatial and temporal resolution. In order to fill these gaps my research program will engineer new optics that will not only improve the spatiotemporal resolution of the current state-of-the-art but also enable researchers to probe multiple simultaneous cellular phenotypes within the 3D architecture of the tissue microenvironment. By employing multiple scanning lightsheets we will develop a large volume hyperspectral LSM that will be able to unmix (segmentation and classification) 12+ fluorophores and image at 300 nm XYZ resolution to quantify the complex spatiotemporal interactions between various cell-types in tissue microenvironment. Additionally, we will develop a next generation LSM that will provide users a seamless transition from an organ/organism level imaging to 300 nm XYZ resolution. It will be proficient in identifying events-of-interest at lower resolution in large organs and intelligently adapt to high-resolution imaging, thus reducing imaging-time and generated-data burden. We will also design a new sample scanning strategy that will minimize light loss within the tissues. In order to prevent out-of-focus blur while imaging inside the tissue we will implement an autofocus routine that will enable users to carry out prolonged and unsupervised imaging of large specimens. Finally, we will develop a lattice lightsheet fluorescence microscope that will be able to perform fast, high-resolution multicolor imaging of live cells and spheroids. A configurable emission path will augment LSM with adaptive optics to counter sample induced aberrations. This will allow us to dynamically observe and quantify morphological phenotypes characteristic for highly metastatic cancer cells, which will be staged in organoids. I believe these have the potential to determine statistically significant patterns within the intact tissue that are bound to uncover novel biological questions.
摘要 光学成像能够快速和微创地观察活细胞内的生物过程, 有机体然而,当前最先进的成像仪器在采集速度、空间分辨率和成像质量方面存在局限性。 和光穿透深度,限制了可以解决的生物问题的类型。这是特别 这对于在时空尺度上跨越几个数量级的生物样品是有问题的。例如,细胞-细胞 肿瘤微环境内的相互作用及其对治疗的反应可在数秒至数天内发生, 在整个组织体积中是异质的。将这些生理结果与潜在的分子 机制(和潜在的治疗靶点)不仅需要我们使用的技术的转变, 这些方法的组合跨越了从细胞到组织的时空尺度。新出现的 像透明组织成像结合光片显微镜(LSM)这样的技术使研究人员能够更深入地探索 不需要切开就能进入组织光片照明提供了更快,更少的光毒性 与点扫描显微镜相比,然而,所有LSM(包括Lattice lightsheet)都在努力解决 基本限制的数量:(a)可以成像的可能标记的最大数量,(B) 他们可以处理的样本,以及(c)空间和时间分辨率差。为了填补这些空白,我的研究计划 将设计新的光学器件,不仅可以提高目前最先进的时空分辨率,而且 使研究人员能够在组织的3D结构中同时探测多种细胞表型 微环境。通过采用多个扫描光片,我们将开发一个大体积的高光谱LSM, 将能够解混(分割和分类)12+荧光团,并以300 nm XYZ分辨率成像,以量化 组织微环境中各种细胞类型之间复杂的时空相互作用。此外,我们将 开发下一代LSM,为用户提供从器官/生物体水平成像到300 nm XYZ分辨率。它将熟练地在大型器官中以较低分辨率识别感兴趣的事件, 智能地适应高分辨率成像,从而减少成像时间和生成的数据负担。我们还将设计 一种新的样本扫描策略,将最大限度地减少组织内的光损失。为了防止失焦模糊, 在组织内成像,我们将实现自动聚焦程序,使用户能够进行长时间的 大型标本的无监督成像。最后,我们将开发一种晶格光片荧光显微镜, 能够对活细胞和球状体进行快速、高分辨率的MRI成像。可配置的发射路径将 用自适应光学增强LSM以对抗样品引起的像差。这将使我们能够动态地观察和 量化高转移性癌细胞的形态学表型特征,其将在类器官中分期。我 相信这些有可能确定完整组织内的统计学显著模式,这些模式与 发现新的生物学问题

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tonmoy Chakraborty其他文献

Tonmoy Chakraborty的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了