Ryanodine Receptors as Therapeutic Targets to Prevent Doxorubicin-Induced Lymphatic Dysfunction
瑞尼定受体作为预防阿霉素引起的淋巴功能障碍的治疗靶点
基本信息
- 批准号:10712392
- 负责人:
- 金额:$ 35.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-10 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcuteAttenuatedBreast Cancer PatientBreast Cancer therapyCalcium ChannelCancer PatientCell DeathCell Death InductionChronicComplicationDevelopmentDoxorubicinDrug usageEnzymesGenerationsHealthcare SystemsHistologicImmobilizationImpairmentIncidenceInjuryLigationLipid PeroxidationLiquid substanceLymphLymphaticLymphatic functionLymphedemaMalignant Female Reproductive System NeoplasmMalignant NeoplasmsMediatingMesenteryMitochondriaModelingMonitorMorphologyMuscle CellsOperative Surgical ProceduresPathway interactionsPatientsPerfusionPeriodicityPersonsPharmaceutical PreparationsPre-Clinical ModelProteinsRadiationRadiation Dose UnitRattusReceptor ActivationResearchRiskRoleRyR1RyR2RyR3Ryanodine Receptor Calcium Release ChannelSOD2 geneSarcoplasmic ReticulumSecond Primary CancersSignal TransductionSpeedSulfhydryl CompoundsSuperoxidesSurgical ModelsTechniquesTherapeuticTissuesbreast surgerycancer riskcancer typechemotherapyclinically relevantcopper zinc superoxide dismutasein vivointerstitialknock-downlipidomicslymph flowlymph nodeslymph stasislymphatic circulationlymphatic dysfunctionlymphatic insufficiencylymphatic surgerylymphatic vesselmalignant breast neoplasmnew therapeutic targetnoveloptical imagingoverexpressionoxidationpre-clinicalpreclinical studypreservationpressurepreventreceptorrecurrent infectionresponserisk mitigationsmall hairpin RNAtherapeutic target
项目摘要
PROJECT SUMMARY/ABSTRACT
Lymphedema is a major complication after radiation and/or surgery for breast and gynecological cancers.
Advancements in surgical techniques mitigate the risk, but the incidence of lymphedema is still high, and there
are no approved medications to prevent or treat it. Doxorubicin (DOX) is a central chemotherapy drug for treating
breast and gynecological cancers, but it increases the risk of lymphedema by 3-fold. The mechanism by which
DOX contributes to chronic lymphedema is unknown, but we found that clinically relevant concentrations of DOX
acutely inhibit lymph vessel (LV) contractions and reduce lymph flow by activating ryanodine receptors (RYRs,
intracellular calcium channels) in lymph muscle cells (LMCs), resulting in tonic Ca2+ leak from the sarcoplasmic
reticulum (SR) and lymphostasis. Sustained high levels of cytosolic Ca2+ [Ca2+i] can promote lipid peroxidation
and cell death pathways, and the increase in intraluminal pressure produced by lymphostasis can damage LV
walls and valve leaflets, synergistically causing chronic lymphatic injury. It is unclear whether DOX activates
RYRs through a direct interaction or indirectly by mediating the oxidation of RYRs. Indeed, DOX elevates both
cytosolic and mitochondrial superoxide (O2•-), which could contribute to RYR oxidation (receptor opening) and
subsequent Ca2+ leak. It is also unknown which RYR subtype (RYR1, RYR2, RYR3) is activated by DOX in
LMCs; if known, it could serve as a potential therapeutic target to prevent DOX-induced lymphatic dysfunction.
We propose RYRs are novel therapeutic targets in LMCs to prevent DOX-induced lymphatic dysfunction and the
development of chronic lymphedema. We hypothesize that DOX generates O2•- to acutely oxidize and open
RYRs to increase [Ca2+i] in LMCs, inhibiting LV contractions and inducing lymphostasis and lymphatic injury, and
added surgical insult potentiates this effect. Accordingly, we will use our well-established rat model to evaluate
RYRs as therapeutic targets to prevent DOX-induced lymphatic dysfunction. Three aims will integrate techniques
in preclinical studies to explore this hypothesis and will rely on protein and functional analysis of isolated LVs,
use optical imaging to assess volumetric lymph flow in vivo in response to DOX and RYR blockade, and
investigate the utility of RYR blockers, as a potential therapeutics in a preclinical model of lymphatic
insufficiency. Aim 1 will determine whether DOX-induced RYR activation is mediated by O2•- in LMCs. Aim 2 will
define the role of RYR subtypes in DOX-induced Ca2+ leak in isolated LVs and in lymph flow in vivo. Aim 3 will
investigate the combined impact of DOX ± RYR blocker on lymphatic function, lipid peroxidation, and lymphatic
morphology in a preclinical rat model of lymphatic insufficiency. Thus, we plan to explore RYRs as novel
therapeutic targets to prevent DOX-related lymphedema and evaluate whether RYR blockers can be utilized as
anti-lymphedema agents.
项目摘要/摘要
淋巴水肿是辐射和/或乳腺癌和妇科癌症手术后的主要并发症。
手术技术的进步可以减轻风险,但淋巴水肿的事件仍然很高,那里
没有批准的药物来预防或治疗它。阿霉素(DOX)是一种用于治疗的中央化学疗法药物
乳腺癌和妇科癌症,但它增加了淋巴水肿的风险3倍。该机制
DOX有助于慢性淋巴水肿,但我们发现临床上相关的DOX浓度
急性抑制淋巴血管(LV)收缩,并通过激活Ryanodine受体(Ryrs,Ryrs,
淋巴肌肉细胞(LMC)中的细胞内钙通道),导致肌浆中的补品Ca2+泄漏
网状(SR)和淋巴结。持续高水平的胞质Ca2+ [Ca2+ i]可以促进脂质过氧化
和细胞死亡途径,以及淋巴结炎产生的腔内压力的增加会损害LV
墙壁和瓣膜小叶,协同造成慢性淋巴损伤。目前尚不清楚DOX是否激活
通过直接相互作用或间接介导Ryrs的氧化。确实,Dox提升了这两个
胞质和线粒体超氧化物(O2• - ),这可能有助于RYR氧化(受体开口),并且
随后的CA2+泄漏。尚不清楚哪种RYR Subtype(RyR1,RyR2,RyR3)在DOX中激活
LMC;如果已知,它可以作为防止DOX诱导的淋巴功能障碍的潜在治疗靶标。
我们建议RYRS是LMC中新型治疗靶标,以防止DOX诱导的淋巴功能障碍和
慢性淋巴水肿的发展。我们假设DOX会生成O2• - 急性氧化物并打开
在LMC中增加[CA2+I]的Ryrs,抑制LV收缩,诱导淋巴结和淋巴损伤,以及
增加了手术损伤潜力。根据所有人,我们将使用我们公认的大鼠模型来评估
Ryrs作为治疗靶标,以防止DOX诱导的淋巴功能障碍。三个目标将整合技术
在临床前研究中,以探讨这一假设,并将依赖于蛋白质和分离的LVS的功能分析,
使用光学成像来评估体内体内的体积淋巴流,以应对DOX和RYR封锁,并且
研究RYR阻滞剂的效用,作为淋巴临床前模型中的潜在疗法
不足。 AIM 1将确定DOX诱导的RYR激活是否由LMC中的O2• - 。 AIM 2意志
定义了RYR亚型在DOX诱导的Ca2+泄漏中的作用,在体内和体内淋巴流中的作用。目标3意志
研究DOX±RYR阻滞剂对淋巴功能,脂质过氧化和淋巴的综合影响
淋巴功能不全的临床前大鼠模型中的形态。那就是我们计划探索里尔作为新颖的
预防与DOX相关淋巴水肿的治疗靶标,并评估RYR阻滞剂是否可以用作
抗淋巴水肿药。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amanda Stolarz其他文献
Amanda Stolarz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amanda Stolarz', 18)}}的其他基金
Mechanism and Prevention of Doxorubicin-Induced Lymphedema
阿霉素所致淋巴水肿的机制及预防
- 批准号:
10240512 - 财政年份:2015
- 资助金额:
$ 35.2万 - 项目类别:
Mechanism and Prevention of Doxorubicin-Induced Lymphedema
阿霉素所致淋巴水肿的机制及预防
- 批准号:
10667663 - 财政年份:2015
- 资助金额:
$ 35.2万 - 项目类别:
Mechanism and Prevention of Doxorubicin-Induced Lymphedema
阿霉素所致淋巴水肿的机制及预防
- 批准号:
10487486 - 财政年份:2015
- 资助金额:
$ 35.2万 - 项目类别:
Mechanism and Prevention of Doxorubicin-Induced Lymphedema
阿霉素所致淋巴水肿的机制及预防
- 批准号:
10025394 - 财政年份:2015
- 资助金额:
$ 35.2万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Nanowired humam cardiac organoid derived exosomes for heart repair
纳米线人类心脏类器官衍生的外泌体用于心脏修复
- 批准号:
10639040 - 财政年份:2023
- 资助金额:
$ 35.2万 - 项目类别:
Investigating cerebrovascular dysfunction and cerebral atrophy in severe traumatic brain injury
严重颅脑损伤中脑血管功能障碍和脑萎缩的调查
- 批准号:
10742569 - 财政年份:2023
- 资助金额:
$ 35.2万 - 项目类别:
R21 MPI microRNA directed therapy for treating early stage pancreatic cancer
R21 MPI microRNA 定向疗法治疗早期胰腺癌
- 批准号:
10577609 - 财政年份:2023
- 资助金额:
$ 35.2万 - 项目类别:
Determining Sox10-mediated plasticity in irradiated salivary gland cells
确定受辐射唾液腺细胞中 Sox10 介导的可塑性
- 批准号:
10606665 - 财政年份:2023
- 资助金额:
$ 35.2万 - 项目类别:
High-throughput closed-loop direct aberration sensing and correction for multiphoton imaging in live animals
用于活体动物多光子成像的高通量闭环直接像差传感和校正
- 批准号:
10572572 - 财政年份:2023
- 资助金额:
$ 35.2万 - 项目类别: