Mechanistic Insights into Catalytic Acyl C-O and C-N Activation and Cross Coupling
催化酰基 C-O 和 C-N 活化及交叉偶联的机理见解
基本信息
- 批准号:10713753
- 负责人:
- 金额:$ 38.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAmidesAreaBenignCatalysisComputer AnalysisCouplingCrystallographyDevelopmentEnvironmentEstersFaceGoalsHealthHumanInvestigationKineticsLigandsMetalsMethodologyMethodsMissionMolecular ProbesNickelPalladiumPharmaceutical PreparationsPlayPublic HealthReactionReaction TimeResearchResearch PersonnelRoleSourceStructureTemperatureTransition ElementsTranslatingUnited States National Institutes of Healthcatalystdesignexperiencefunctional grouphuman diseaseimprovedinnovationinsightinventionnext generationprogramssmall moleculesmall molecule therapeuticstooltranslational potential
项目摘要
PROJECT SUMMARY/ABSTRACT
Transition metal-catalyzed cross-coupling methods are important in the context of human health because they
play a central role in the synthesis of small-molecule therapeutics and molecular probes. Although cross-coupling
methodologies are dominated by palladium catalysis, newer methodologies utilizing terrestrially abundant 3d
metals (such as nickel) enable cross-coupling with polar C–O and C–N electrophiles. This feature is important
because O- and N-containing functional groups are common in bioderived and bioactive small molecules and
could therefore offer a greatly expanded scope of sustainably sourced cross-coupling partners. However, nickel
catalyzed methodologies for cross-coupling with acyl C–O and C–N electrophiles remain in early stages, and (i)
face practical limitations due to a pronounced sensitivity to changes in substrate structure, (ii) generally require
high precatalyst loadings, and (iii) often utilize high reaction temperatures or long reaction times. Attempts to
address these limitations are stymied by a lack of detailed mechanistic into the features responsible. This
proposal addresses these ambiguities through systematic mechanistic investigation of three distinct classes of
nickel-catalyzed cross-coupling with biologically important acyl C–O and C–N electrophiles with a specific focus
on (i) C–X activation steps, (ii) selectivity-determining features, and (iii) speciation of key organometallic
intermediates. This approach leverages ligand design and organometallic synthesis, structure elucidation
through spectroscopic and crystallographic studies, and reaction kinetics, supported by state-of-the-art
computational analysis to derive insights into the reactivity and selectivity-determining features of catalytic
reactions. These insights will be leveraged to elucidate key reactivity and selectivity relationships and to offer
methodological improvements that address current inefficiencies. As an Early-Stage Investigator (ESI), the PI is
uniquely suited to build this research program due to their extensive prior experience working across the organic–
inorganic and synthetic–mechanistic axes to interrogate, improve, and invent methodologies with translational
potential. The PI’s program will build on this expertise to offer conceptually innovative, mechanism-driven,
strategies to meet key synthetic needs. Successful completion of the proposed research will result in detailed
insight into the mechanisms and limiting features of nickel-catalyzed acyl C–N and C–O activation and cross
coupling. These insights will be translated into development of a suite of single-component precatalysts with
enhanced activity and selectivity along with a practical “user’s guide to catalyst selection” to enable expanded
application to the synthesis and elaboration of biologically important small molecules. The ultimate goal of this
project area is to achieve mechanism-driven improvements bringing these methodologies—which use
terrestrially abundant metals to elaborate biologically abundant functional groups—to a level competitive with or
superior to established, palladium-catalyzed cross-coupling alternatives.
项目总结/摘要
过渡金属催化的交叉偶联方法在人类健康的背景下是重要的,因为它们
在小分子治疗剂和分子探针的合成中发挥核心作用。虽然交叉耦合
钯催化是主要的方法,利用地球上丰富的三维
金属(例如镍)能够与极性C-O和亲电体和C-N亲电体交叉偶联。该特征是重要的
因为含O和N的官能团在生物衍生的和生物活性的小分子中是常见的,
因此,可以大大扩大可持续来源的交叉耦合合作伙伴的范围。然而,镍
与酰基C-O和C-N亲电体交叉偶联的催化方法仍处于早期阶段,以及(i)
由于对衬底结构变化的显著敏感性而面临实际限制,(ii)通常需要
高的预催化剂负载量,和(iii)经常利用高的反应温度或长的反应时间。试图
解决这些局限性是由于缺乏详细的机制到负责的功能。这
建议通过对三种不同类别的
镍催化的交叉偶联与生物学上重要的酰基C-O和C-N亲电试剂,
(i)C-X活化步骤,(ii)选择性决定特征,(iii)关键有机金属的形态
中间体的这种方法利用配体设计和有机金属合成,结构解析
通过光谱学和晶体学研究以及反应动力学,
计算分析,以深入了解催化剂的反应性和选择性决定特征,
反应.这些见解将被用来阐明关键的反应性和选择性关系,
改进方法,解决目前的效率低下问题。作为早期研究者(ESI),PI是
独特的适合建立这个研究计划,由于他们广泛的工作经验,在整个有机-
无机和合成机械轴,以询问,改进和发明翻译方法
潜力PI的计划将建立在这种专业知识的基础上,提供概念创新,机制驱动,
满足关键合成需求的战略。成功完成拟议的研究将导致详细的
深入了解镍催化的酰基C-N和C-O活化和交叉的机制和限制特征
偶合器.这些见解将转化为一套单组分预催化剂的开发,
提高活性和选择性沿着实用的“催化剂选择用户指南”,
应用于生物学上重要的小分子的合成和加工。这个项目的最终目标
项目领域的目标是实现机制驱动的改进,
地球上丰富的金属,以阐述生物丰富的功能团-到一个水平的竞争,或
上级于已建立的钯催化的交叉偶联替代物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caitlyn Rose Kennedy其他文献
Caitlyn Rose Kennedy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Research Grant