Role of novel histone modifications and variants in transcriptional regulation
新型组蛋白修饰和变异在转录调控中的作用
基本信息
- 批准号:10713891
- 负责人:
- 金额:$ 38.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylationAmino AcidsArchitectureBiochemicalBiologicalCell physiologyChromatinCompetenceComplexComputing MethodologiesCuesDNA RepairDataDeacetylationDiseaseGene ExpressionGene Expression RegulationGeneticGenetic TranscriptionGenomeHistone AcetylationHistone H3HistonesLaboratoriesLysineMalignant NeoplasmsMethylationMethyltransferaseModificationMolecularMolecular Mechanisms of ActionN-terminalNucleosomesOutputPathogenicityPathologicPatternPhosphorylationPost-Translational Protein ProcessingProductionProteinsRNARNA ProcessingRNA SplicingRegulationResearchRoleSeriesSignal TransductionStructureThreonineTranscriptional RegulationVariantcombinatorialepigenomeexosomeexperiencehistone modificationhuman diseasenovelprogramsupstream kinase
项目摘要
PROJECT SUMMARY
Posttranslational modification (PTM) of nucleosome-associated histone proteins, along with histone variant
incorporation, influences transcriptional competence and their dysregulation has been identified in numerous
pathological states. Histone H3 N-terminal acetylation, methylation, and phosphorylation are common PTMs; the
precise combination of these PTMs can modulate chromatin architecture and genome organization, leading to
changes in gene expression. Despite extensive efforts to characterize H3 PTMs and H3 variants, their
mechanistic and functional interplay, and their ability to influence biological output, it remains unclear how
histones and many histone PTMs integrate cues from upstream signaling cascades to regulate gene expression.
The overarching objective for my laboratory is to define mechanisms that regulate histone PTM patterns and
unmask how they influence transcriptional output. Over the next five years, we propose a combinatorial approach
leveraging genetic, molecular, cellular, biochemical and computational methods to define novel mechanisms by
which a poorly understood histone H3 PTM, H3 threonine 45 phosphorylation (pH3T45), relays cellular signals
from upstream kinases to impact gene expression, and leverage this approach to delineate how novel pathogenic
histone H3 variants dysregulate the epigenome to alter cellular function. Our preliminary data suggest that H3T45
phosphorylation status (1) modulates H3K4 methylation by directing specific H3K4-modifying complexes to
chromatin; (2) disrupts H3K36me3 via competing histone acetylation/deacetylation; (3) regulates RNA
processing through differential association with splicing factors and the RNA exosome complex. We will dissect
how H3K4-methyltransferase complexes differ in structure, function, and biological output when associated with
pH3T45 or unmodified H3T45. We will delineate how pH3T45 impacts the dynamics of H3K36 acetylation and
H3K36 methylation in the context of DNA repair. We will then define how pH3T45 governs the production of
mature RNA by examining the role of unmodified H3T45 and pH3T45 throughout RNA processing. Lastly, we
have identified a series of cancer-associated H3 variants in which an amino acid is changed to a lysine, termed
“H3 X to K” variants. Our preliminary data demonstrates that H3 X to K variants dysregulate proximal H3 PTMs
to uniquely modulate gene expression. We will leverage our experience studying pH3T45 to mechanistically
define how H3 X to K variants reprogram the epigenome to produce transcriptional and functional cellular
changes. This research will address the regulation and effects of histone PTM patterns and H3 variant
expression, which will inform our view of how H3 PTMs and variant expression underlies human disease.
项目总结
核小体相关组蛋白及其变异体的翻译后修饰
整合,影响转录能力和它们的失调已被发现在许多
病态。组蛋白H3N-末端乙酰化、甲基化和磷酸化是常见的PTM;
这些PTM的精确结合可以调节染色质结构和基因组组织,导致
基因表达的变化。尽管对H3PTM和H3变种的特征进行了广泛的努力,但他们的
机制和功能的相互作用,以及它们影响生物产量的能力,目前尚不清楚
组蛋白和许多组蛋白PTM整合来自上游信号级联的信号来调节基因表达。
我的实验室的首要目标是定义调节组蛋白PTM模式和
揭开它们是如何影响转录输出的。在接下来的五年里,我们提出了一种组合方法
利用遗传、分子、细胞、生化和计算方法定义新的机制
它是一种知之甚少的组蛋白H3 PTM,H3苏氨酸45磷酸化(PH3T45),传递细胞信号
从上游激酶到影响基因表达,并利用这种方法来描绘新的致病机制
组蛋白H3变异体调节表观基因组以改变细胞功能。我们的初步数据显示,H3T45
磷酸化状态(1)通过引导特定的H3K4修饰复合体来调节H3K4甲基化
染色质;(2)通过竞争性的组蛋白乙酰化/去乙酰化来干扰H3K36me3;(3)调节RNA
通过与剪接因子和RNA外体复合体的差异关联进行处理。我们将解剖
H3K4-甲基转移酶复合体在结构、功能和生物产量上的差异
PH3T45或未改性的H3T45。我们将描述PH3T45如何影响H3K36乙酰化动力学和
DNA修复背景下的H3K36甲基化。然后,我们将定义PH3T45如何管理
通过研究未修饰的H3T45和PH3T45在RNA加工过程中的作用来成熟RNA。最后,我们
已经确定了一系列与癌症相关的H3变种,在这些变种中,氨基酸被改变为赖氨酸,称为
“H3X to K”的变种。我们的初步数据表明,H3X到K变异体对近端H3PTM的调节失调
以独特的方式调节基因表达。我们将利用我们研究PH3T45的经验来机械地
定义H3X到K变异如何重新编程表观基因组以产生转录和功能细胞
改变。这项研究将解决组蛋白PTM模式和H3变异体的调节和作用
表达,这将告诉我们关于H3PTM和变异表达是如何导致人类疾病的观点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Marie Spangle其他文献
Jennifer Marie Spangle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Marie Spangle', 18)}}的其他基金
The PI3K/AKT Pathway Regulates Histone H3 Modification
PI3K/AKT 通路调节组蛋白 H3 修饰
- 批准号:
10224108 - 财政年份:2019
- 资助金额:
$ 38.58万 - 项目类别:
The PI3K/AKT Pathway Regulates Histone H3 Modification
PI3K/AKT 通路调节组蛋白 H3 修饰
- 批准号:
10006066 - 财政年份:2019
- 资助金额:
$ 38.58万 - 项目类别:
The PI3K/AKT Pathway Regulates Histone H3 Modification
PI3K/AKT 通路调节组蛋白 H3 修饰
- 批准号:
9243133 - 财政年份:2017
- 资助金额:
$ 38.58万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 38.58万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 38.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 38.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 38.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 38.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 38.58万 - 项目类别:
Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 38.58万 - 项目类别:
Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 38.58万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 38.58万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 38.58万 - 项目类别:














{{item.name}}会员




