Project 1: DNA Methylation-Based Blood Biomarkers for Prognosis, Molecular Stratification and Treatment Response in Glioma Patients
项目 1:基于 DNA 甲基化的血液生物标志物用于神经胶质瘤患者的预后、分子分层和治疗反应
基本信息
- 批准号:10712666
- 负责人:
- 金额:$ 58.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-09-20 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptive Cell TransfersAdrenal Cortex HormonesAgeAlgorithmsAmericanAstrocytomaB-LymphocytesBioinformaticsBiological MarkersBloodBrain NeoplasmsCD8-Positive T-LymphocytesCellsClinicalClinical DataClinical TrialsClinical Trials DesignDNA MethylationDNA Modification MethylasesDataDexamethasoneDiagnosisEnhancing LesionExhibitsFreezingFutureGenerationsGenomeGenomicsGlioblastomaGliomaGrantHeterogeneityImmuneImmune systemImmunologic FactorsImmunologic MarkersImmunosuppressionImmunotherapyIndividualInterventionIsocitrate DehydrogenaseLesionLibrariesMagnetic Resonance ImagingMalignant neoplasm of brainMeasuresMemoryMethodologyMethodsMethylationModalityModelingMolecularMutationMyeloid-derived suppressor cellsNatural Killer CellsNeoadjuvant TherapyOperative Surgical ProceduresOther GeneticsOutcomePD-1/PD-L1Patient RecruitmentsPatientsPatternPeripheralPopulationPredictive FactorPrognosisPrognostic FactorRadiationRadiology SpecialtyRepeat SurgeryRiskScienceStandardizationSteroidsStratificationSubgroupTechniquesTechnologyTestingTherapeuticUncertaintyWhole Bloodanti-PD-1blood-based biomarkercancer siteclinical applicationclinically relevantepigenomicsimprovedindexinginnovationmethylation patternmonocyteneutrophilnoveloligodendrogliomaperipheral bloodprognosis biomarkerprognostic modelprognosticationradiation effectresponseresponse biomarkertooltranslational goaltreatment responsetumoryears of life lost
项目摘要
Project Summary/Abstract
Gliomas are a heterogeneous group of tumors with diverse clinical outcomes. While isocitrate dehydrogenase
mutation (IDH-MT) and other genetic features of glioma have changed the landscape of diagnosis and prognosis
for lower-grade glioma, these same markers do not explain heterogeneity in treatment response and survival for
glioblastoma (GBM). Individual immune factors may play a role in glioma outcomes. To address this, we have
pioneered immunomethylomics, an approach that defines and quantitates an extended library of immune cell
populations (e.g., naïve and memory CD4, CD8 T-cells, and B cells, NK cells, monocytes, neutrophils) and
aberrant myeloid-derived suppressor cells (MDSCs) from fresh or frozen peripheral whole blood.
Immunomethylomics is a powerful methodology based on DNA methylation patterns in the immune cell
genomes. In this renewal, we will use immunomethylomics to address high-priority and yet unresolved clinical
problems in GBM patient management using three aims. In Aim 1, we propose to develop an algorithm for
stratifying GBM patients according to expected survival. Historically, individual measures were used, i.e., age,
IDH-MT (<10% of GBMs), and DNA methyltransferase (MGMT) methylation. Important gaps in this univariate
approach include the lack of assessment of corticoid steroid immunosuppression and the influence of MDSCs.
We will address these gaps by creating integrated IDH-Wildtype (IDH-WT) GBM survival models with longitudinal
immune profile data. In Aim 2, we will create a blood-based stratification of glioma subgroups by IDH status and
grade. The current lack of methods to identify tumor IDH status before surgery limits neoadjuvant and
intraoperative therapeutic strategies that are increasingly important in clinical trial design. Aim 2 addresses this
unmet need. In Aim 3, we will create predictive blood biomarkers for response to immunotherapy and radiation.
Non-invasive predictors are urgently needed to help distinguish radiologic evidence of early true progression
(~30% of GBM patients) from pseudoprogression (PsP; ~20-30%). Uncertainty about true progression vs. PsP
based on magnetic resonance imaging (MRI) alone results in patients being subjected to the risk and expense
of re-operation for further management. Our and others’ recent studies demonstrate that both PsP and GBM
survival are influenced by patient immunologic factors, specifically, the concentrations of MDSCs that
accumulate in peripheral blood. Aim 3A addresses this unmet need by creating a blood-based biomarker to
distinguish PsP from true progression in GBM patients after chemo/radiation. There are no standardized
comprehensive methods to assess the effect of the systemic immune system on response to immunotherapies.
In Aim 3B we test our methodology in four clinical trials representing two different immunotherapy modalities
(anti-PD1/PD-L1 and CART adoptive cell therapy). In summary, this project will continue to identify novel
prognostic and predictive factors for glioma through carefully conducted studies using the latest genomic
technologies and innovative bioinformatics techniques in combination with well-annotated patient clinical data.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANNETTE M MOLINARO其他文献
ANNETTE M MOLINARO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANNETTE M MOLINARO', 18)}}的其他基金
Novel Tree-based Statistical Methods for Cancer Risk Prediction
用于癌症风险预测的新的基于树的统计方法
- 批准号:
8373032 - 财政年份:2012
- 资助金额:
$ 58.62万 - 项目类别:
Novel Tree-based Statistical Methods for Cancer Risk Prediction
用于癌症风险预测的新的基于树的统计方法
- 批准号:
8658404 - 财政年份:2012
- 资助金额:
$ 58.62万 - 项目类别:
Novel Tree-based Statistical Methods for Cancer Risk Prediction
用于癌症风险预测的新的基于树的统计方法
- 批准号:
8508207 - 财政年份:2012
- 资助金额:
$ 58.62万 - 项目类别:
Statistical Methods for Predicting Survival Outcomes from Genomic Data
从基因组数据预测生存结果的统计方法
- 批准号:
7476447 - 财政年份:2006
- 资助金额:
$ 58.62万 - 项目类别:
Statistical Methods for Predicting Survival Outcomes from Genomic Data
从基因组数据预测生存结果的统计方法
- 批准号:
7138117 - 财政年份:2006
- 资助金额:
$ 58.62万 - 项目类别:
Statistical Methods for Predicting Survival Outcomes from Genomic Data
从基因组数据预测生存结果的统计方法
- 批准号:
7257150 - 财政年份:2006
- 资助金额:
$ 58.62万 - 项目类别: