Statistical Methods for Predicting Survival Outcomes from Genomic Data

从基因组数据预测生存结果的统计方法

基本信息

  • 批准号:
    7476447
  • 负责人:
  • 金额:
    $ 15.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-06 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Dr. Annette Molinaro is an Assistant Professor in the Division of Biostatistics in the Department of Epidemiology and Public Health at Yale University School of Medicine. Prior to arriving at Yale, Dr. Molinaro was a Cancer Prevention Fellow at the National Cancer Institute. Her long term career goal is to develop statistical and computational methods which elucidate mechanisms of cancer pathogenesis to be used for the purposes of cancer prevention, diagnosis, and treatment. To reach this goal she has outlined two areas which are in need of enhancement: 1) her knowledge of functional genomics specifically related to carcinogenesis; and, 2) her proficiency in computer programming for the purposes of searching for and extracting pertinent information from vast data structures. A comprehensive understanding of the biological mechanisms behind carcinogenesis as well as the advanced computational skills necessary to implement novel statistical methods will propel Dr. Molinaro's independent research program. To meet these needs, Dr. Molinaro will: 1) attend classes at Yale University in genomics, bioinformatics, computer science, and molecular biology; 2) participate in world renowned courses at the Jackson and Cold Spring Harbor Laboratories in mammalian genetics, computational and comparative genomics, and complex trait analysis; and, 3) attend scientific meetings and workshops to present her K22 research, build collaborations, and engage in scientific discussion on current issues concerning statistical genomics. Her proposed research project entails a comprehensive, aggressive search of genomic, epidemiologic, and histologic data for the purposes of predicting a clinical outcome of interest, such as time to recurrence or death. Dr. Molinaro has established a univariate approach to this problem; however, she now needs to expand this to a realistic biological setting. The primary aims of this research project are: 1) to account for missing values in the genomic variables; 2) evaluate measures of variable importance; and, 3) extend this approach to encompass other statistical models such as wavelets and splines. This K22 grant will enable Dr. Molinaro the protected time and resources to accomplish her training in the molecular biology of cancer, establish collaborations at Yale University and beyond, and provide the scientific community with a much needed tool for associating genomic data with clinical outcomes. Relevance: Dr. Molinaro's research incorporates genomic, histological, and epidemiological information in order to predict a clinical outcome, such as time to disease progression. It is methods such as this that will provide greater clarity within the complexity of carcinogenesis and allow for more targeted methods of cancer prevention and control.
描述(由申请人提供):Annette Molinaro博士是耶鲁大学医学院流行病学和公共卫生系生物统计学系的助理教授。在来到耶鲁大学之前,莫利纳罗博士是美国国家癌症研究所的癌症预防研究员。她的长期职业目标是开发统计和计算方法,阐明癌症发病机制,用于癌症预防,诊断和治疗。为了实现这一目标,她概述了两个需要加强的领域:1)她对与致癌作用特别相关的功能基因组学的了解; 2)她精通计算机编程,以便从大量数据结构中搜索和提取相关信息。全面了解致癌背后的生物学机制以及实施新的统计方法所需的先进计算技能将推动Molinaro博士的独立研究计划。为了满足这些需求,Molinaro博士将:1)参加耶鲁大学的基因组学、生物信息学、计算机科学和分子生物学课程; 2)参加杰克逊和冷泉港实验室在哺乳动物遗传学、计算和比较基因组学以及复杂性状分析方面的世界知名课程;以及,3)参加科学会议和研讨会,介绍她的K22研究,建立合作关系,并参与有关统计基因组学当前问题的科学讨论。她提出的研究项目需要对基因组,流行病学和组织学数据进行全面,积极的搜索,以预测感兴趣的临床结果,如复发或死亡的时间。莫利纳罗博士已经建立了一个单变量的方法来解决这个问题;然而,她现在需要将其扩展到一个现实的生物环境。该研究项目的主要目的是:1)解释基因组变量中的缺失值; 2)评估变量重要性的度量; 3)将这种方法扩展到其他统计模型,如小波和样条。这笔K22赠款将使Molinaro博士有受保护的时间和资源来完成她在癌症分子生物学方面的培训,在耶鲁大学及其他地方建立合作,并为科学界提供将基因组数据与临床结果相关联的急需工具。相关性:Molinaro博士的研究结合了基因组学,组织学和流行病学信息,以预测临床结果,如疾病进展的时间。正是这样的方法,将在致癌的复杂性中提供更大的清晰度,并允许更有针对性的癌症预防和控制方法。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High levels of vascular endothelial growth factor and its receptors (VEGFR-1, VEGFR-2, neuropilin-1) are associated with worse outcome in breast cancer.
高水平的血管内皮生长因子及其受体(VEGFR-1,VEGFR-2,Neuropilin-1)与乳腺癌预后较差有关。
  • DOI:
    10.1016/j.humpath.2008.06.004
  • 发表时间:
    2008-12
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Ghosh, Sriparna;Sullivan, Catherine A. W.;Zerkowski, Maciej P.;Molinaro, Annette M.;Rimm, David L.;Camp, Robert L.;Chung, Gina G.
  • 通讯作者:
    Chung, Gina G.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ANNETTE M MOLINARO其他文献

ANNETTE M MOLINARO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ANNETTE M MOLINARO', 18)}}的其他基金

BIOSTATISTICS AND CLINICAL CORE
生物统计学和临床​​核心
  • 批准号:
    8514331
  • 财政年份:
    2013
  • 资助金额:
    $ 15.96万
  • 项目类别:
Novel Tree-based Statistical Methods for Cancer Risk Prediction
用于癌症风险预测的新的基于树的统计方法
  • 批准号:
    8373032
  • 财政年份:
    2012
  • 资助金额:
    $ 15.96万
  • 项目类别:
Novel Tree-based Statistical Methods for Cancer Risk Prediction
用于癌症风险预测的新的基于树的统计方法
  • 批准号:
    8658404
  • 财政年份:
    2012
  • 资助金额:
    $ 15.96万
  • 项目类别:
Novel Tree-based Statistical Methods for Cancer Risk Prediction
用于癌症风险预测的新的基于树的统计方法
  • 批准号:
    8508207
  • 财政年份:
    2012
  • 资助金额:
    $ 15.96万
  • 项目类别:
Statistical Methods for Predicting Survival Outcomes from Genomic Data
从基因组数据预测生存结果的统计方法
  • 批准号:
    7138117
  • 财政年份:
    2006
  • 资助金额:
    $ 15.96万
  • 项目类别:
Statistical Methods for Predicting Survival Outcomes from Genomic Data
从基因组数据预测生存结果的统计方法
  • 批准号:
    7257150
  • 财政年份:
    2006
  • 资助金额:
    $ 15.96万
  • 项目类别:
Project 1: DNA Methylation-Based Blood Biomarkers for Prognosis, Molecular Stratification and Treatment Response in Glioma Patients
项目 1:基于 DNA 甲基化的血液生物标志物用于神经胶质瘤患者的预后、分子分层和治疗反应
  • 批准号:
    10712666
  • 财政年份:
    2002
  • 资助金额:
    $ 15.96万
  • 项目类别:
Core 2: Biostatistical and Clinical Core
核心 2:生物统计和临床核心
  • 批准号:
    10712674
  • 财政年份:
    2002
  • 资助金额:
    $ 15.96万
  • 项目类别:
BIOSTATISTICS AND CLINICAL CORE
生物统计学和临床​​核心
  • 批准号:
    9333217
  • 财政年份:
  • 资助金额:
    $ 15.96万
  • 项目类别:
BIOSTATISTICS AND CLINICAL CORE
生物统计学和临床​​核心
  • 批准号:
    8920015
  • 财政年份:
  • 资助金额:
    $ 15.96万
  • 项目类别:

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 15.96万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 15.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了