Bayesian Mortality Estimation from Disparate Data Sources
来自不同数据源的贝叶斯死亡率估计
基本信息
- 批准号:10717177
- 负责人:
- 金额:$ 32.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-06 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAdoptedAgeAreaBayesian ModelingBenchmarkingBirthBirth HistoryCOVID-19 pandemicCaringCensusesCessation of lifeChildChild MortalityChildhoodCollaborationsComplexComputer softwareCountryDataData CollectionData ReportingData SourcesDecision MakingDedicationsDevelopmentDiseaseDisparateDisparityElementsEventExcess MortalityExerciseGeographyGoalsGuidelinesHealthHouseholdIndividualInterventionLinkManuscriptsMeasuresMethodologyMethodsModelingMothersNeonatal MortalityPaperPeer ReviewPopulationProceduresProcessProductionPublic HealthPublishingReportingReproducibilityReproducibility of ResultsResearch PersonnelSoftware ValidationStatistical MethodsStratificationSurveysSustainable DevelopmentSystemTimeTrainingTranslationsTwitterUncertaintyUnited NationsUpdateWalkingWorkWorld Health Organizationcomputing resourcesdata modelingdata streamsdesigndiscrete dataflexibilityglobal healthinterestlow and middle-income countriesmortalitynew pandemicnovel strategiesopen sourcepandemic diseasepredictive modelingpublic health interventionresponsesexsuccesstemporal measurementtheoriesuser friendly softwareweb site
项目摘要
Project Summary: The goal of the proposal is to develop a Bayesian statistical framework for mortality estimation
from disparate data sources. Using this framework we will produce a suite of principled methods to be used in
those situations in which vital registration data are lacking. We will emphasize efficient implementations that
can be used by researchers in low- and middle-income countries (LMICs), who may have limited computing
resources. In Aim 1, we will develop guidelines on a general statistical framework for mortality estimation. Aim 2
will focus on subnational child mortality with particular emphasis on the under-5 mortality rate (U5MR), which is
a key indicator of the health of a population, and the neonatal mortality rate (NMR). Excess mortality estimation
during the Covid-19 pandemic, by month, at the country level, will be the subject of Aim 3. We will disseminate
results widely and provide software and training in the developed methods.
We will produce yearly estimates of U5MR and NMR at the geographical level at which health decisions are
made. To achieve this goal, household survey, VR and census data must be combined in a coherent way. Census
data on child mortality typically provide summary birth history (SBH) data, which consist of mother's age along
with the number of children born and the number who died, but without the times at which those events occurred.
We will develop a framework for combining the different data sources, which will entail dealing with the design
issues in the household survey, accounting for unknown birth and death times in the SBH data, and estimating the
completeness of the VR data (births and deaths). We will also incorporate demographic information via a form
of Bayesian benchmarking. Effective and appropriate use of the models will require rigorous model assessment,
careful interpretation of results and meaningful and informative graphical summaries.
We will develop robust models to evaluate the excess mortality, i.e., the difference between the deaths ob-
served in the pandemic and those expected if the pandemic had not occurred. We will model the expected deaths,
and incorporate the uncertainty in this endeavor in the excess mortality calculation. Completeness of mortality
counts, that is, under-reporting and delays in reporting, will also be considered. For countries who do not report
deaths in the pandemic, we must predict the mortality count using available country-level covariate data, and we
will adopt flexible yet interpretable regression forms, and acknowledge uncertainty in the covariate data.
We will produce user-friendly software for the methods, along with vignettes and training materials, including
short courses. The endpoint is to have software that can be used by researchers in LMICs. All aims will be
informed by the collaborative team's close links with the United Nations Inter-agency Group for Child Mortality
Estimation (for the subnational child mortality aim) and the World Health Organization Division of Data, Analytics
and Delivery for Impact (for the excess mortality aim). Together we will develop methods to highlight disparities
and inform interventions.
项目摘要:该提案的目标是开发用于死亡率估计的贝叶斯统计框架
从不同的数据源。使用这个框架,我们将产生一套原则性的方法,
缺乏生命登记数据的情况。我们将强调有效的实施,
可供低收入和中等收入国家(LMIC)的研究人员使用,他们的计算能力可能有限
资源在目标1中,我们将制定关于死亡率估计的一般统计框架的指南。目的2
将侧重于国家以下各级的儿童死亡率,特别是5岁以下儿童死亡率,
人口健康的关键指标,以及新生儿死亡率。超额死亡率估计
在新冠肺炎大流行期间,在国家一级按月计算,将是目标3的主题。我们将传播
结果广泛,并提供软件和培训的开发方法。
我们将在做出健康决策的地理级别上对五岁以下儿童死亡率和核磁共振进行年度估计
进行了为了实现这一目标,必须以连贯的方式将住户调查、虚拟现实和人口普查数据结合起来。普查
关于儿童死亡率的数据通常提供简要出生史(SBH)数据,其中包括母亲的年龄沿着
有多少孩子出生,有多少孩子死亡,但没有这些事件发生的时间。
我们将开发一个框架来结合不同的数据源,这将需要处理设计
家庭调查中的问题,在SBH数据中解释未知的出生和死亡时间,并估计
VR数据的完整性(出生和死亡)。我们还将通过表格纳入人口统计信息
Bayesian Benchmarking的一部分。有效和适当地使用模型将需要严格的模型评估,
仔细解释结果和有意义和信息丰富的图形总结。
我们将开发强大的模型来评估超额死亡率,即,死亡人数的差异
在大流行期间以及在大流行未发生时预期的服务。我们将模拟预期的死亡,
并将这一奋进中的不确定性纳入超额死亡率计算中。死亡率的完全性
也将考虑到未充分报告和延迟报告的情况。对于未提交报告的国家
为了减少大流行中的死亡人数,我们必须利用现有的国家一级协变量数据预测死亡人数,
将采用灵活但可解释的回归形式,并承认协变量数据的不确定性。
我们将为这些方法制作用户友好的软件,沿着插图和培训材料,包括
短期课程。最终目标是拥有可供中低收入国家研究人员使用的软件。所有的目标都将是
通过协作小组与联合国儿童死亡率机构间小组的密切联系,
估计(国家以下各级儿童死亡率目标)和世界卫生组织数据、分析司
和“交付以产生影响”(超额死亡率目标)。我们将共同制定方法,
并为干预提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JONATHAN C WAKEFIELD其他文献
JONATHAN C WAKEFIELD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JONATHAN C WAKEFIELD', 18)}}的其他基金
SPATIO-TEMPORAL EPIDEMIOLOGY: METHODS AND APPLICATIONS
时空流行病学:方法和应用
- 批准号:
9144720 - 财政年份:2005
- 资助金额:
$ 32.31万 - 项目类别:
Spatio-Temporal Epidemiology: Methods and Applications
时空流行病学:方法与应用
- 批准号:
7269420 - 财政年份:2005
- 资助金额:
$ 32.31万 - 项目类别:
Spatio-Temporal Epidemiology: Methods and Applications
时空流行病学:方法与应用
- 批准号:
7125963 - 财政年份:2005
- 资助金额:
$ 32.31万 - 项目类别:
Spatio-Temporal Epidemiology: Methods and Applications
时空流行病学:方法与应用
- 批准号:
7487082 - 财政年份:2005
- 资助金额:
$ 32.31万 - 项目类别:
SPATIO-TEMPORAL EPIDEMIOLOGY: METHODS AND APPLICATIONS
时空流行病学:方法和应用
- 批准号:
8758573 - 财政年份:2005
- 资助金额:
$ 32.31万 - 项目类别:
Spatio-Temporal Epidemiology: Methods and Applications
时空流行病学:方法与应用
- 批准号:
6927704 - 财政年份:2005
- 资助金额:
$ 32.31万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 32.31万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 32.31万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 32.31万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 32.31万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 32.31万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 32.31万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 32.31万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 32.31万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 32.31万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 32.31万 - 项目类别:
Research Grant