Bayesian Mortality Estimation from Disparate Data Sources

来自不同数据源的贝叶斯死亡率估计

基本信息

  • 批准号:
    10717177
  • 负责人:
  • 金额:
    $ 32.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-06 至 2028-05-31
  • 项目状态:
    未结题

项目摘要

Project Summary: The goal of the proposal is to develop a Bayesian statistical framework for mortality estimation from disparate data sources. Using this framework we will produce a suite of principled methods to be used in those situations in which vital registration data are lacking. We will emphasize efficient implementations that can be used by researchers in low- and middle-income countries (LMICs), who may have limited computing resources. In Aim 1, we will develop guidelines on a general statistical framework for mortality estimation. Aim 2 will focus on subnational child mortality with particular emphasis on the under-5 mortality rate (U5MR), which is a key indicator of the health of a population, and the neonatal mortality rate (NMR). Excess mortality estimation during the Covid-19 pandemic, by month, at the country level, will be the subject of Aim 3. We will disseminate results widely and provide software and training in the developed methods. We will produce yearly estimates of U5MR and NMR at the geographical level at which health decisions are made. To achieve this goal, household survey, VR and census data must be combined in a coherent way. Census data on child mortality typically provide summary birth history (SBH) data, which consist of mother's age along with the number of children born and the number who died, but without the times at which those events occurred. We will develop a framework for combining the different data sources, which will entail dealing with the design issues in the household survey, accounting for unknown birth and death times in the SBH data, and estimating the completeness of the VR data (births and deaths). We will also incorporate demographic information via a form of Bayesian benchmarking. Effective and appropriate use of the models will require rigorous model assessment, careful interpretation of results and meaningful and informative graphical summaries. We will develop robust models to evaluate the excess mortality, i.e., the difference between the deaths ob- served in the pandemic and those expected if the pandemic had not occurred. We will model the expected deaths, and incorporate the uncertainty in this endeavor in the excess mortality calculation. Completeness of mortality counts, that is, under-reporting and delays in reporting, will also be considered. For countries who do not report deaths in the pandemic, we must predict the mortality count using available country-level covariate data, and we will adopt flexible yet interpretable regression forms, and acknowledge uncertainty in the covariate data. We will produce user-friendly software for the methods, along with vignettes and training materials, including short courses. The endpoint is to have software that can be used by researchers in LMICs. All aims will be informed by the collaborative team's close links with the United Nations Inter-agency Group for Child Mortality Estimation (for the subnational child mortality aim) and the World Health Organization Division of Data, Analytics and Delivery for Impact (for the excess mortality aim). Together we will develop methods to highlight disparities and inform interventions.
项目摘要:该提案的目标是开发死亡率估计的贝叶斯统计框架

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JONATHAN C WAKEFIELD其他文献

JONATHAN C WAKEFIELD的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JONATHAN C WAKEFIELD', 18)}}的其他基金

SPATIO-TEMPORAL EPIDEMIOLOGY: METHODS AND APPLICATIONS
时空流行病学:方法和应用
  • 批准号:
    9144720
  • 财政年份:
    2005
  • 资助金额:
    $ 32.31万
  • 项目类别:
Spatio-Temporal Epidemiology: Methods and Applications
时空流行病学:方法与应用
  • 批准号:
    7269420
  • 财政年份:
    2005
  • 资助金额:
    $ 32.31万
  • 项目类别:
Spatio-Temporal Epidemiology: Methods and Applications
时空流行病学:方法与应用
  • 批准号:
    7125963
  • 财政年份:
    2005
  • 资助金额:
    $ 32.31万
  • 项目类别:
Spatio-Temporal Epidemiology: Methods and Applications
时空流行病学:方法与应用
  • 批准号:
    7487082
  • 财政年份:
    2005
  • 资助金额:
    $ 32.31万
  • 项目类别:
SPATIO-TEMPORAL EPIDEMIOLOGY: METHODS AND APPLICATIONS
时空流行病学:方法和应用
  • 批准号:
    8758573
  • 财政年份:
    2005
  • 资助金额:
    $ 32.31万
  • 项目类别:
Spatio-Temporal Epidemiology: Methods and Applications
时空流行病学:方法与应用
  • 批准号:
    6927704
  • 财政年份:
    2005
  • 资助金额:
    $ 32.31万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 32.31万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 32.31万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.31万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了