ECG-AI Based Prediction and Phenotyping of Heart Failure with Preserved Ejection Fraction
基于 ECG-AI 的射血分数保留的心力衰竭预测和表型分析
基本信息
- 批准号:10717312
- 负责人:
- 金额:$ 71.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdultAncillary StudyArtificial IntelligenceCardiologyCardiovascular DiseasesCardiovascular systemCause of DeathChicagoChronicClassificationClinical DataDataData SetDetectionDiagnosisEFRACEarly DiagnosisElderlyElectrocardiogramElectronic Health RecordEnrollmentEpidemiologyEtiologyFundingGoalsHealth SciencesHealthcare SystemsHeart failureIndividualInterventionKnowledgeLeft Ventricular Ejection FractionMachine LearningMethodsModalityModelingModificationMorbidity - disease rateMultiomic DataNational Heart, Lung, and Blood InstituteOlder PopulationParticipantPatientsPhenotypePreventivePrognosisQuality of lifeResearchRiskRisk ReductionSiteStandardizationSyndromeTennesseeTestingTrainingTreatment FailureUnited StatesUnited States National Institutes of HealthUniversitiesValidationWomanWorkadjudicationartificial intelligence methodburden of illnesscohortcostdeep learningdeep learning modeldiagnostic criteriaelectronic health dataforesthands-on learningimprovedlearning strategymodel buildingmortalitymultiple omicsnovelpatient populationpredictive modelingpreservationrepositoryrisk predictionrisk prediction modelscreeningstandard of caretargeted treatmenttherapeutic developmenttooltransfer learningtreatment optimization
项目摘要
Project Summary/Abstract
More than 6 million adults are suffering from heart failure in the United States. Heart failure is associated with
high mortality rate while also reducing the quality of life. Early recognition of heart failure and timely
interventions can help reducing the disease burden to individuals and to overall healthcare system. However,
more than half of HF patients are HF with preserved left ventricular ejection fraction (HFpEF) while the majority
of existing HF treatments are for HF with reduced left ventricular ejection fraction (HFrEF). This is because
HFpEF is a heterogenous syndrome, and its etiology is not well understood. A new NIH-funded initiative,
HeartShare Study, aims to fill this knowledge gap to identify subtypes of HFpEF potentially with different
treatment options using deep phenotyping, multi-omics, and machine learning approach. However, there is still
a need for low cost and accessible tools 1) for screening large patient populations for HFpEF risk to support
preventive risk modification strategies and 2) for identifying HFpEF subtypes to assist targeted therapeutics.
The goal of this ancillary study is to utilize low cost and accessible electrocardiogram (ECG) data via artificial
intelligence (AI) for prediction of incident HFpEF risk and subtyping of prevalent HFpEF.
We and others have shown that AI applied to ECG data can discriminate patients with reduced and preserved
EF with high accuracy [1-5]. We recently developed and validated an ECG-based 10-year HF risk prediction
model using artificial intelligence (AI) [6, 7]. These findings led us to hypothesize that AI applied to ECG data
can predict HFpEF risk and identify specific HFpEF subtypes. The goal of this ancillary study is to test our
hypothesis by leveraging retrospective ECG and clinical data from: a) NIH-funded studies with gold standard
ascertainment of HFpEFand b) real-world ECG and clinical data from three large healthcare systems (WFU-
Wake Forest University, Winston-Salem, NC; UT-University of Tennessee Health Science Center, Memphis,
TN; and LUC-Loyola University Chicago) and c) data from the HeartShare Study. Building on our expertise, we
propose developing ECG-based risk prediction and classification of HFpEF subtypes by completing three
Aims:
Aim 1. Develop an incident HFpEF prediction model using data from NIH-funded studies: We will utilize
high quality and accurate data from NIH-funded studies to develop AI model predicting risk for incident HFpEF.
Aim 2. Develop an incident HFpEF prediction model using real-world Electronic Health Records (EHR)-
derived data: We will first utilize very larger and diverse EHR-based real world data to develop incident
HFpEF risk prediction model. We will then harmonize it with the NIH-data based model via transfer learning.
Aim 3. Develop, test and implement ECG-based HFpEF phenotyping. This aim will utilize data from
prevalent HFpEF patients to classify HFpEF subtypes.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oguz Akbilgic其他文献
Oguz Akbilgic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oguz Akbilgic', 18)}}的其他基金
Deep learning of awake and sleep electrocardiography to identify atrial fibrillation risk in sleep apnea
深度学习清醒和睡眠心电图来识别睡眠呼吸暂停中的房颤风险
- 批准号:
10579141 - 财政年份:2023
- 资助金额:
$ 71.14万 - 项目类别:
Early Identification of Childhood Cancer Survivors at High Risk for Late Onset Cardiomyopathy: An Artificial Intelligence Approach utilizing Electrocardiography
早期识别迟发性心肌病高风险儿童癌症幸存者:利用心电图的人工智能方法
- 批准号:
10457160 - 财政年份:2022
- 资助金额:
$ 71.14万 - 项目类别:
Early Identification of Childhood Cancer Survivors at High Risk for Late Onset Cardiomyopathy: An Artificial Intelligence Approach utilizing Electrocardiography
早期识别迟发性心肌病高风险儿童癌症幸存者:利用心电图的人工智能方法
- 批准号:
10610470 - 财政年份:2022
- 资助金额:
$ 71.14万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 71.14万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 71.14万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 71.14万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 71.14万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 71.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 71.14万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 71.14万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 71.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 71.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 71.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




