Linking rare primate ganglion cells to downstream visual functions
将稀有灵长类神经节细胞与下游视觉功能联系起来
基本信息
- 批准号:10721221
- 负责人:
- 金额:$ 13.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAction PotentialsAcuteAdvisory CommitteesAmacrine CellsAreaBehaviorBehavioralBlindnessBrainCalciumCell CommunicationCell physiologyClassificationCodeConsciousCortical BlindnessDetectionDiseaseElectrophysiology (science)EyeEye MovementsFacultyFeedbackFluorescenceFoundationsGoalsHealthImageImaging TechniquesIndividualInvestigationKnowledgeLasersLesionLightLinkLongitudinal StudiesMacacaMeasuresMediatingMentorsModelingMotionNeuronsOphthalmoscopyOptokinetic nystagmusOutputPathway interactionsPatientsPhasePhysiologicalPhysiologyPopulationPositioning AttributePrimatesPropertyReflex actionResearchResolutionRetinaRetinal DegenerationRetinal Ganglion CellsRetrograde DegenerationRoleScanningSignal TransductionSourceSpeedStandard ModelStrokeStructureTechnical ExpertiseTechniquesTestingTracerTrainingTrans-Synaptic DegenerationUniversitiesViral VectorVisionVisualVisual CortexVisual PathwaysVisual PerceptionVisual SystemVisual impairmentVisualizationadaptive opticsblindcareercell typeexperimental studyganglion cellimprovedin vivoin vivo calcium imagingneuraloptical imagingpreservationresponseskillstemporal measurementtenure tracktimelinetooltransmission processvisual informationvisual neurosciencevisual processingvoltage
项目摘要
ABSTRACT
Retinal ganglion cells (RGCs) provide the sole source of visual information to the brain and form the building
blocks for all downstream vision. In primates, considerable progress has been made in characterizing the three
most common RGC types, which make up 80% of the retinal output, and much less is known about the remaining
15+ rarer RGC types. A key barrier to progress has been the difficulty of targeting these rare RGCs in acute
experiments. These challenges have been overcome with an approach for visualizing the structure and function
of foveal RGCs in the living macaque eye by combining calcium imaging, retrograde tracers and fluorescence
adaptive optics scanning light ophthalmoscopy (FAOSLO). FAOSLO imaging is non-invasive and enables study
of the same RGC populations for months or years. This technique has enabled in vivo classification of foveal
RGCs to identify the elusive rarer types. This proposal aims to extend the capabilities of FAOSLO imaging to
directly test the roles of these rare RGCs in vision while establishing the foundation for an independent research
career. Aim One will implement high-speed scanning strategies and voltage indicators to read the retinal code
in the living eye and achieve the temporal resolution necessary to study rare motion-sensitive RGCs. Aim Two
will directly test the hypothesis that the rare ON direction selective RGC type contributes to optokinetic eye
movements in primates using targeted laser lesions of individual RGCs. Aim Three will establish a paradigm to
isolate rare RGCs and the visual functions they mediate through transneuronal retrograde degeneration following
V1 lesions. This line of investigation will also clarify the timeline of RGC loss and the underlying physiological
changes that occur in RGCs following V1 damage in strokes. The research goals of this proposal are reinforced
by a comprehensive training plan that will provide the new skills and knowledge necessary to achieve the
candidate’s research goal of establishing the links between rare primate RGCs and visual functions. The
candidate will carry out the mentored phase with Dr. David Williams, a pioneer in the use of adaptive optics for
imaging the eye. Co-mentor Dr. Bill Merigan will contribute expertise in behavioral experiments, lesions and viral
vectors. Additional training from a first-rate advisory committee (Drs. Krystel Huxlin, Tony Movshon and Jesse
Schallek) will put the candidate on a strong pathway to independence. Together, the research and training
proposed will facilitate the candidate’s successful transition to a tenure-track faculty position at a research-
intensive university.
摘要
视网膜神经节细胞(RGC)为大脑提供视觉信息的唯一来源,并形成建筑物
所有下游视觉的块。在灵长类动物中,
最常见的RGC类型,占视网膜输出的80%,其余的则知之甚少。
15+稀有RGC类型。进展的一个关键障碍是难以在急性炎症中靶向这些罕见的RGC。
实验这些挑战已经克服了可视化的结构和功能的方法
应用钙离子成像、逆行示踪和荧光技术研究猕猴视网膜神经节细胞
自适应光学扫描光检眼镜(FAOSLO)。FAOSLO成像是非侵入性的,
几个月或几年的同一个RGC人口。这项技术已经能够在体内分类的中心凹
RGC用于识别难以捉摸的罕见类型。该提案旨在扩大FAOSLO成像的能力,
直接测试这些罕见的RGC在视觉中的作用,同时为独立研究奠定基础
事业Aim One将实现高速扫描策略和电压指示器来读取视网膜代码
在活体眼睛中,并达到研究罕见的运动敏感RGC所需的时间分辨率。目标二
将直接检验罕见的ON方向选择性RGC类型有助于视动眼的假设
运动的灵长类动物使用有针对性的激光损伤个别RGCs。目标三将建立一个范例,
分离罕见的RGC和它们通过跨神经元逆行变性介导的视觉功能,
V1病变。这条调查线还将阐明RGC损失的时间轴和潜在的生理学变化。
中风时V1受损后RGCs发生的变化。这一建议的研究目标得到加强
一个全面的培训计划,将提供必要的新技能和知识,以实现
候选人的研究目标是建立罕见的灵长类动物RGCs和视觉功能之间的联系。的
候选人将与大卫威廉姆斯博士一起进行指导阶段,他是自适应光学用于
对眼睛进行成像。共同导师比尔·梅里根博士将贡献行为实验,病变和病毒
向量。一流咨询委员会(Krystel Huxlin博士、Tony Movshon博士和Jesse博士)提供的额外培训
沙莱克)将使候选人走上一条通往独立的强有力的道路。在一起,研究和培训
建议将促进候选人的成功过渡到终身教职职位的研究-
密集型大学
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sara S Patterson其他文献
Sara S Patterson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sara S Patterson', 18)}}的其他基金
Foveal ganglion cell function in the living eye
活体眼睛中中心凹神经节细胞的功能
- 批准号:
10671959 - 财政年份:2022
- 资助金额:
$ 13.35万 - 项目类别:
Foveal ganglion cell function in the living eye
活体眼睛中中心凹神经节细胞的功能
- 批准号:
10456593 - 财政年份:2021
- 资助金额:
$ 13.35万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 13.35万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 13.35万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 13.35万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 13.35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 13.35万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 13.35万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 13.35万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 13.35万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 13.35万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 13.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)