Environmental modulation of metabolic function in microbial communities
微生物群落代谢功能的环境调节
基本信息
- 批准号:10720118
- 负责人:
- 金额:$ 33.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-03 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAffectAutomobile DrivingBacteriaBasic ScienceBiological ModelsBiomassBlood PressureCarbonCarbon DioxideCell RespirationCellsChemicalsChromosome MappingClimateCommunitiesComplexCustomDevicesDietEnvironmentEnvironmental ImpactEquilibriumEutrophicationExhibitsFrequenciesGenesGenetic TranscriptionGenomeGenomicsGenotypeGlobal WarmingGoalsGrowthHealthHematopoietic NeoplasmsHumanHuman bodyHumanitiesIndividualKnowledgeLearningMachine LearningMapsMeasurementMediatingMetabolicMetabolic ControlMetabolic PathwayMetabolismMethodsMicrobial PhysiologyModelingMolecularNitratesNitric OxideNitritesNutrientOralOrganismOutcomeOxidantsOxygenOzonePathway interactionsPatternPhenotypePhysiologicalPhysiologyPlayPolysaccharidesPredispositionProcessProductionPropertyReactionRegulator GenesResource SharingResourcesRespirationRoleRouteScheduleSourceStructureSystemTestingToxic effectVariantWorkbacterial communitybehavior predictionclimate changedenitrificationdesigngenome-widehost-associated microbial communitiesimprovedinsightlearning communitylensmicrobialmicrobial communitymicrobiome compositionmicrobiome researchmicrobiotapH gradientpollutantprogramssuccesstrait
项目摘要
Microbial communities are complex systems whose emergent metabolic properties play a key role in
determining human health. Metabolic processes enabled by host-associated microbiota play a defining role in
individual health outcomes, and the emergent metabolism of microbial consortia affect environmental
processes from eutrophication to climate change, impacting human health on a global scale. Therefore,
humanity would benefit from a quantitative understanding of the rules by which the genomic composition of a
microbial community, and the environment in which it resides, determines its emergent metabolism.
Discovering the principles by which environmental variation alters community structure and determines
metabolic function is a necessity if we are to manipulate or design communities to improve health outcomes.
However, this task is challenging for existing methods.
In preliminary work, we establish a new quantitative framework for predicting the emergent metabolism
of a bacterial community from its genomic composition using denitrification as a model metabolic process.
Combining quantitative bacterial phenotyping, modeling, and a simple statistical approach we demonstrated a
method that quantitatively maps gene content to metabolite dynamics in microbial communities. This insight
provides a route to quantitatively connecting the genes present in a community to metabolite dynamics. The
next challenge is to use this insight to understand how community function and structure depend on the
environment.
We propose to extend this success by understanding how environmental gradients, complexity, and
dynamics impact community structure and function. We accomplish this by developing denitrification as a
model metabolic process. The outcomes of the proposed work will be three-fold. First, microbiome studies
have documented ubiquitous associations between environmental conditions and community composition, but
we do not understand the ecological or physiological origins of these emergent patterns or their metabolic
consequences. Using denitrifying communities across a pH gradient I will show that such patterns emerge from
ecological interactions. I will show that these interactions arise generically from the presence of physiological
trade-offs on microbial traits, providing a generalizable route to understanding the functional impact of
environmental variation on communities. Second, our preliminary study connected genomes to community
metabolism for a simple metabolic pathway acting. I will extend this success to complex pathways and
environmental conditions by constructing a method for predicting carbon utilization by communities in complex
nutrient conditions directly from genomes. I will utilize a powerful blend of genome-scale metabolic modeling
and multi-view machine learning, with impacts from host physiology to climate change. Third, I will use
denitrifying communities to test the idea that, like cells and organisms, microbial communities exhibit predictive
behaviors in dynamic environments. I propose that communities assembled in environments with distinct
schedules of aerobic respiration and anaerobic respiration (denitrification) adapt to facilitate the prompt
utilization of electron acceptors. I will test the hypothesis that community-level learning emerges from
ecological interactions and distinct gene regulatory programs, providing a new conceptual lens through which
we can view community adaptation to dynamic environments.
微生物群落是复杂的系统,其新陈代谢特性在
决定着人类的健康。寄主相关微生物区系启动的新陈代谢过程在
个人健康结果,以及微生物群体的紧急新陈代谢影响环境
从富营养化到气候变化的过程,在全球范围内影响人类健康。因此,
人类将受益于对规则的定量理解,根据这些规则,
微生物群落及其所处的环境决定了它的新陈代谢。
发现环境变化改变群落结构并决定它们的原理
如果我们要操纵或设计社区来改善健康结果,代谢功能是必要的。
然而,这项任务对现有方法来说是具有挑战性的。
在前期工作中,我们建立了一个新的定量框架来预测紧急代谢
利用反硝化作用作为模型代谢过程,从细菌群落的基因组组成来分析细菌群落。
结合定量细菌表型、建模和一种简单的统计方法,我们演示了
将基因含量定量映射到微生物群落中的代谢物动态的方法。这种洞察力
提供了一条将群落中存在的基因与代谢动力学定量联系起来的途径。这个
下一个挑战是利用这种洞察力来理解社区的功能和结构如何依赖于
环境。
我们建议通过了解环境梯度、复杂性和
动态影响社区结构和功能。我们通过将反硝化作为一种
对代谢过程进行建模。拟议工作的结果将是三方面的。第一,微生物组研究
都记录了环境条件和群落组成之间无处不在的联系,但
我们不了解这些新出现的模式的生态或生理起源或它们的代谢。
后果。使用跨pH梯度的反硝化群落,我将展示这样的模式来自
生态互动。我将证明,这些相互作用一般是由生理因素的存在引起的
微生物特性的权衡,提供了一种普遍的途径来理解
环境对社区的影响。第二,我们的初步研究将基因组与群落联系起来
代谢为一条简单的代谢途径作用。我将把这一成功扩展到复杂的道路和
构建复合体群落碳利用预测方法的环境条件
直接来自基因组的营养条件。我将利用基因组规模新陈代谢模型的强大混合
以及多视角机器学习,从宿主生理到气候变化的影响。第三,我将使用
反硝化群落,以测试这样一个想法,即像细胞和有机体一样,微生物群落表现出可预测的
动态环境中的行为。我建议社区聚集在不同的环境中
调整好氧呼吸和无氧呼吸(反硝化)的时间表,以便于提示
电子受体的利用。我将检验这样一个假设,即社区水平的学习产生于
生态相互作用和独特的基因调控计划,提供了一个新的概念镜头,通过
我们可以看到社区对动态环境的适应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seppe Kuehn其他文献
Seppe Kuehn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 33.71万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 33.71万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 33.71万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 33.71万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 33.71万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 33.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 33.71万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 33.71万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 33.71万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 33.71万 - 项目类别:
Grant-in-Aid for Early-Career Scientists