Advanced thin-slab TOF-PET detector module for next generation of brain PET
用于下一代大脑 PET 的先进薄板 TOF-PET 探测器模块
基本信息
- 批准号:10719570
- 负责人:
- 金额:$ 68.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAgingAlgorithmsAlzheimer&aposs DiseaseBrainBrain DiseasesBrain imagingCalibrationCause of DeathCerebrovascular DisordersChildhoodClinicalClinical ResearchCompton radiationDedicationsDementiaDevelopmentDevicesDiagnosisDiagnostic EquipmentDiameterDiseaseElderlyEventFaceFoundationsFutureGoalsHealthcare SystemsHeart DiseasesImageKnowledgeLongevityLongitudinal StudiesMalignant NeoplasmsMental disordersMetalsMissionMolecularNeurotransmittersOutcomePatientsPerformancePhotonsPlayPopulationPositron-Emission TomographyPrevalencePricePublic HealthRadiation Dose UnitRecoveryResearchResolutionRoleScanningShapesSocietiesStagingStructureSystemTechnologyTestingThinnessTimeUnited States National Institutes of HealthVisionWorkaging populationbrain metabolismbrain researchclinical diagnosticsconvolutional neural networkcostcost effectivedesigndetectordisabilityhigh standardimagerimaging modalityimprovedin vivoinnovationmolecular imagingneural network algorithmneurochemistryneuropsychiatrynext generationnovelpreventprototypequantitative imagingradiotracerreceptorresponsescale upscreeningsimulationstandard of caretemporal measurementtool
项目摘要
ABSTRACT (30 lines)
It is well established that the increasing lifespan in the US is leading to increased prevalence of brain diseases
and mental illnesses, with dementia and Alzheimer’s posing significant challenges to the healthcare system.
Because brain Positron Emission Tomography (PET) is a powerful noninvasive tool for clinical studies and
research on fundamental mechanisms of brain maladies and metal disorders, it is expected to play an
important role in addressing this challenge. However, current brain PET technologies are limited with relatively
low sensitivity and low spatial resolution, constraining its usefulness in this context. Consequently, there is a
critical need to improve quantitative imaging performance of brain PET. To address this need, we propose to
develop advanced detector modules and associated algorithms, leveraging in particular recent progress in
time-of-flight (TOF) detector technologies. These modules will lay the foundation for a follow-on project to
develop an ultra-high-performance dedicated whole-brain TOF-PET camera (BRAIN PET EXPLORER) for
research and clinical work. This device will overcome the current technology shortcomings by providing
substantial gain in effective sensitivity and much higher spatial resolution imaging over the most current
advanced brain PET system (NeuroEXPLORER commissioned in 2022). The crucial factor for improved
performance of TOF-PET is better coincidence time resolution (CTR - time difference between arrival of the
two annihilation photons) enabling accurate localization of the annihilation event a line-of-response. Our
research is innovative because the goal of this proof-of-concept proposal is to build and demonstrate these
novel and advanced thin-slab TOF-PET detector modules, and establish their suitability for scale up in a full
BRAIN PET EXPLORER (future work). These detector modules will establish CTR <100 ps FWHM performance,
enabling an 8× gain in effective sensitivity and outstanding 3D event localization (compared to the current
state-of-art scanners) at reduced cost. An additional factor of up to 2× boost in effective sensitivity is expected
to be achieved by accurate determination of the point-of-first-interaction for annihilation photons that undergo
Compton scatter between detector blocks. The overall > 8× increase in the effective sensitivity can be used to
reduce the activity of radiotracer administered to the patient, reduce the examination duration, increase spatial
resolution, or increase the temporal resolution in dynamic brain-PET imaging. All these factors will make the
brain-PET a more useful, cost-effective and affordable research and clinical tool. The advent of such innovative
brain PET technology will help address growing prevalence of brain diseases and mental illnesses facing the
aging population of the US.
2
摘要(30行)
众所周知,美国人寿命的增加导致脑部疾病的患病率增加
和精神疾病,痴呆症和阿尔茨海默氏症对医疗保健系统构成重大挑战。
由于脑正电子发射断层扫描(PET)是一种强大的非侵入性临床研究工具,
研究脑疾病和精神障碍的基本机制,预计将发挥
在应对这一挑战中发挥重要作用。然而,目前的脑PET技术相对受限,
低灵敏度和低空间分辨率,限制了其在这方面的用途。因此,有一个
迫切需要改善脑PET的定量成像性能。为了满足这一需求,我们建议
开发先进的探测器模块和相关算法,特别是利用最近的进展,
飞行时间(TOF)探测器技术。这些单元将为后续项目奠定基础,
开发超高性能专用全脑TOF-PET相机(BRAIN PET EXPLORER),
研究和临床工作。该设备将克服目前的技术缺陷,
在有效灵敏度和更高的空间分辨率成像方面的实质性增益,
先进的脑部PET系统(NeuroEXPLORER于2022年投入使用)。改善的关键因素
TOF-PET的性能是更好的符合时间分辨率(CTR -到达时间之间的时间差,
两个湮没光子),使得能够将湮没事件精确定位在响应线上。我们
研究是创新的,因为这个概念验证提案的目标是建立和证明这些
新的和先进的薄板TOF-PET探测器模块,并建立其适用于规模扩大,在一个完整的
脑PET探索者(未来的工作)。这些探测器模块将建立CTR <100 ps FWHM性能,
有效灵敏度提高8倍,3D事件定位出色(与当前相比
最先进的扫描仪)。预计有效灵敏度将增加2倍
通过精确确定湮灭光子的第一相互作用点来实现,
探测器块之间的康普顿散射。有效灵敏度的总体> 8倍的增加可用于
降低给予患者的放射性示踪剂的活性,缩短检查持续时间,增加空间
分辨率,或增加动态脑PET成像中的时间分辨率。所有这些因素将使
脑PET是一种更有用、更具成本效益和负担得起的研究和临床工具。这种创新的出现
脑PET技术将有助于解决日益普遍的脑部疾病和精神疾病,
美国人口老龄化。
2
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael O Thompson其他文献
Michael O Thompson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 68.36万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 68.36万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 68.36万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 68.36万 - 项目类别:
Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 68.36万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 68.36万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 68.36万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 68.36万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 68.36万 - 项目类别:
Standard Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 68.36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)