A novel electric current-based treatment system for chronic wound biofilm infections

一种新型的基于电流的慢性伤口生物膜感染治疗系统

基本信息

  • 批准号:
    10720191
  • 负责人:
  • 金额:
    $ 37.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-07 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY. Chronic, non-healing wounds are currently affecting more than 6 million Americans. They have significant impact on patients’ mobility and quality of life, and can lead to a high incidence of amputation and mortality rate. Biofilm infection is a critical factor that leads to chronic wound formation. Biofilm bacteria are very difficult to kill compared to planktonic bacteria due to their reduced growth and metabolic rates, the presence of persister cells, inducible resistance mechanisms in response to antibiotic challenges, and the mutational resistance development. Current clinical standard of care for chronic wound biofilm infections uses repeated debridement with prolonged systemic or topical administration of antimicrobial agents. This treatment has limited efficacy and imposes a significant burden on both patients and healthcare providers. The development of more effective delivery technologies for antimicrobial agents and physical biofilm treatment methods is a very active research area. However, current technologies reported in the literature offer limited improvement in anti-biofilm efficacy, may cause potential damage to host tissues, or require a long-term application to be effective. There is a critical need for more efficacious and safer biofilm treatment technologies that does not require long-duration and frequent treatment applications to facilitate a timely closure of chronic wounds. Our long-term goal is to apply engineering innovations and technological advances to providing better healthcare to chronic wound patients. Our overall objective in this proposal is to develop a novel, electric current-based system to provide a complete treatment strategy for multispecies chronic wound biofilm infections from the initial reduction of bacterial bioburden to the long-term maintenance of wound sterility during the entire course of wound healing. Our system will perform two functions to achieve this goal: 1) electrical debridement of biofilm by high- intensity electric current application; and 2) rapid delivery of high-concentration antibiotics and antimicrobial nanoparticles by high-intensity iontophoresis. The electrical debridement and antibiotics will achieve a rapid initial reduction of biofilm bacterial count to below the clinical threshold for wound infection (105 CFU/g). The antimicrobial nanoparticles will then maintain a low bacterial bioburden, prevent biofilm reformation and new infections throughout the wound healing process. Our proposed system will be based on a novel hydrogel ionic circuit technology developed in our lab to allow safe application of high-intensity current to wound tissues to significantly enhance electrical debridement efficacy and iontophoretic delivery efficiency for antibiotics and antimicrobial nanoparticles. If successful, our biofilm treatment system will have direct positive impact on all patients suffering from chronic wounds by significantly reducing the wound healing duration, the amputation rate and mortality rate associated with chronic wounds.
项目总结。慢性的、无法愈合的伤口目前正在影响600多万美国人。 它们对患者的行动能力和生活质量有重大影响,并可导致高发病率 截肢和死亡率。生物膜感染是导致慢性创面形成的关键因素。生物膜 与浮游细菌相比,细菌很难杀死,因为它们的生长和代谢率降低, 永生化细胞的存在,对抗生素挑战的可诱导耐药机制,以及 突变抗药性的发展。慢性创面生物被膜感染的现行临床护理标准 反复清创,长期全身或局部使用抗菌药物。这种治疗方法 疗效有限,给患者和医疗保健提供者都带来了沉重的负担。这个 开发更有效的抗菌剂输送技术和物理生物膜处理 方法是一个非常活跃的研究领域。然而,文献中报告的当前技术提供的有限 提高抗生物被膜的功效,可能会对宿主组织造成潜在的损害,或需要长期 申请是有效的。迫切需要更有效、更安全的生物膜处理技术。 这不需要长时间和频繁的治疗应用,以促进及时关闭慢性 伤口。 我们的长期目标是应用工程创新和技术进步来提供更好的医疗保健 给慢性伤口患者。我们在这项提议中的总体目标是开发一种新颖的、基于电流的 系统从一开始就为多种慢性伤口生物被膜感染提供完整的治疗策略 减少细菌生物负荷,长期维持创面全过程无菌 治愈。我们的系统将执行两个功能来实现这一目标:1)电清除生物膜。 2)高浓度抗生素和抗菌剂的快速输送 纳米粒子通过高强度离子导入。电清创术和抗生素治疗将迅速取得初步疗效 将生物被膜细菌数量降至伤口感染的临床阈值以下(105cfu/g)。这个 抗菌纳米粒则会保持较低的细菌生物量,防止生物被膜的重新形成和新 在伤口愈合过程中一直受到感染。我们建议的系统将基于一种新型的水凝胶离子 我们实验室开发的电路技术可以安全地将高强度电流应用于伤口组织 显著提高抗生素的电清创效率和离子导入效率 抗菌纳米颗粒。如果成功,我们的生物膜处理系统将对所有 对患有慢性创面的患者可显著缩短创面愈合时间、截肢率 以及与慢性伤口相关的死亡率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siwei Zhao其他文献

Siwei Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.77万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 37.77万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 37.77万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.77万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 37.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.77万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 37.77万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 37.77万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 37.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 37.77万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了