Engineering Surface Coatings for Localized Delivery of Therapeutic Extracellular Vesicles
用于治疗性细胞外囊泡局部递送的工程表面涂层
基本信息
- 批准号:10719257
- 负责人:
- 金额:$ 17.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-07 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdhesionsAdsorptionAnimal ModelArchitectureAtomic Force MicroscopyBiocompatible MaterialsBiological AssayBolus InfusionBone RegenerationCell AdhesionCell CommunicationCell secretionCellsChargeClinicalConfocal MicroscopyDevelopmentElectrostaticsEngineeringEnvironmentEnzyme-Linked Immunosorbent AssayEquilibriumExtracellular MatrixExtracellular Matrix ProteinsFlow CytometryFluorescenceFluorescence MicroscopyGoalsHydrogelsImmunohistochemistryImplantIn VitroLabelLateralLigandsLipidsLiver RegenerationManualsMediatingMesenchymalModelingMorphologyMuscleMyocardial InfarctionNatural regenerationNucleic AcidsOrganOsteogenesisPalpationPathologyPathway interactionsPlayPolymersPolysaccharidesPre-Clinical ModelProliferatingPropertyProteinsQuartzRattusRegenerative MedicineResearchResearch ProposalsReverse Transcriptase Polymerase Chain ReactionRoleScanning Electron MicroscopySignal TransductionSodium ChlorideSpinal FusionStainsStromal CellsSurfaceSystemTendon structureTestingTherapeuticTissue EngineeringTissuesVesicleWestern BlottingWorkabsorptionbonecartilage regenerationcell typeclinical applicationclinical translationdiabetic wound healingextracellular vesiclesimmunoregulationimprovedimproved outcomein vivoin vivo regenerationinhibitorinsightinterestlight scatteringmechanical propertiesmedical implantnanoparticlenanoscalepreclinical studyprotein biomarkersradiological imagingreceptorregenerative therapyrepairedscaffoldscreeningstemsurface coatingtherapeutically effectivetissue regenerationtissue repairtomographyuptakezeta potential
项目摘要
PROJECT SUMMARY
The PI’s long-term research goal is to engineer the cell-material interface for applications in tissue engineering,
regenerative medicine, and medical implants, with a particular focus on bone regeneration. Extracellular vesicle
(EV) - based therapies have been of increasing interest in the past decade to treat a variety of pathologies.
Although EV delivery from various carrier systems has been shown to induce tissue regeneration in preclinical
models, there remains a critical gap in efficient and controlled delivery of therapeutic EVs. This proposal aims to
engineer a surface coating system that promotes localized EV delivery for tissue engineering and regenerative
medicine applications. The central hypothesis underlying this research is that surface-mediated EV delivery
modulates cellular uptake and signaling in comparison to bolus or systemic EV delivery.
The specific research objectives of this proposal are to: (1) Investigate the roles of electrostatic and receptor-
ligand interactions in the adsorption and release of EVs to/from surface coatings; (2) Investigate the effects of
surface-based EV delivery in comparison to bolus EV delivery; and, (3) Demonstrate that EV delivery from
surface-coated tissue engineering scaffolds improves tissue regeneration in vivo in a rat spinal fusion model. EVs
will be derived from mesenchymal stem/stromal cells (MSCs) and characterized for size, surface charge, and
protein markers. Interactions between MSC-EVs and surface coatings composed of ECM proteins,
polysaccharides and charged polymers will be analyzed under various conditions (pH, R-L inhibitors, salt
screening) via fluorescence labeling studies and quartz crystal microbalance with dissipation analyses. EV uptake
efficiency and endocytic pathways will be analyzed in several cell types (MSCs, HUVECs, HEK293s) in
comparison to bolus EV delivery via fluorescence microscopy and flow cytometry (+/- endocytic pathway
inhibitors). Cellular adhesion, proliferation, and angiogenic differentiation and immunomodulation will also be
analyzed in vitro. In vivo bone forming capacity and fusion efficacy of EVs delivered from surface-coated
scaffolds will be evaluated in the rat posterolateral lumbar fusion model via manual palpation, radiographic
scoring, volumetric microcomputed tomography (µCT) and immunohistochemistry, in comparison to uncoated
scaffolds and bolus delivery. Results from this work will significantly advance understanding of how material
properties and surface-based EV delivery impact cellular EV uptake, adhesion, proliferation and differentiation.
Additionally, this proposal will enable development of effective therapeutic EV surface-coatings that can tailored
for a wide variety of scaffolds and/or implants for many different therapies, including cartilage regeneration,
diabetic wound healing, cardiac infarction, and tendon and muscle repair.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christina Andrea Holmes其他文献
Christina Andrea Holmes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 17.06万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 17.06万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 17.06万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 17.06万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 17.06万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 17.06万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 17.06万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 17.06万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 17.06万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 17.06万 - 项目类别: