Three-dimensional, Portable, Inexpensive, and Reusable Tomographic Microscopy
三维、便携式、廉价且可重复使用的断层扫描显微镜
基本信息
- 批准号:10721691
- 负责人:
- 金额:$ 8.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAlgorithmsAnimalsAttenuatedBacteriaBiologicalBiologyBiomedical EngineeringCaenorhabditis elegansCellular PhoneChargeConeCoupledDataDetectionDevicesDiagnosticDiameterEducationElementsEquipmentEvaluationExclusionFetusFundingHomeImageImaging DeviceImaging TechniquesImaging technologyInfrastructureInvestigationLaboratoriesLasersLightLightingLocationMedicalMethodsMicroscopeMicroscopyModernizationMotorMusOpticsOrganismParasitesPathologyPerformanceResearchResolutionResourcesRotationRuralSamplingShapesSiteSourceStructureSystemTechniquesTechnologyTelephoneTestingThree-Dimensional ImageThree-Dimensional ImagingTissuesVirus DiseasesVisible RadiationWeightWorkabsorptionalgorithm developmentattenuationbioluminescence imagingcostimaging modalityimprovedinsightlaboratory curriculumlenslight emissionlight transmissionlithographymanufacturemanufacturing costmetermillimeterpolydimethylsiloxaneportabilityreconstructionremote locationtomographytoolundergraduate student
项目摘要
PROJECT SUMMARY
Three-dimensional (3D) microscopy offers many promises for biological investigations and medical
applications. However, it is currently limited to well-resourced laboratories in settings with established
infrastructure. Many 3D microscopy techniques (e.g., confocal) rely on focusing light at an array of small
locations within the sample, which requires expensive and specialized equipment. Optical Projection
Tomography (OPT) is a 3D imaging technique that utilizes traditional microscopy equipment; instead of
focusing the light at specific locations, OPT images a sample from many angles to reconstruct a 3D volume.
It is a very effective method for 3D imaging of small translucent objects (e.g., mouse fetuses, parasites, and
large bacteria). While it is possible for OPT to be a lower-cost method of 3D microscopy, existing systems
remain expensive and large. We propose to take advantage of the ubiquitous and high-quality computing
and imaging hardware available in smartphones to make an OPT device that is inexpensive and extremely
portable. We will create a smartphone extension that robustly images a rotating sample and uses the
phone’s computational hardware to reconstruct the 3D volume. Two imaging modalities will be pursued:
visible-band attenuation microscopy (e.g., brightfield) and luminescent microscopy (e.g., bioluminescent).
The components of the smartphone extension are either 3D printed, laser cut acrylic, or readily commercially
available. Thus, the cost of manufacturing the device is extremely small and the total weight of the device is
very low; the total cost of all components will be less than $50. The components of the extension are easily
assembled on site, permitting the device to be transported with in a small package. Due to its low cost and
size, the OPT microscope can also serve as a useful tool for educational purposes (e.g., as part of an
undergraduate laboratory course involving optics) and for generating real data for tomographic algorithm
development. To validate the device, we will build two phantoms with three-dimensional features that allow
us to evaluate the Modulation Transfer Function: one for attenuation microscopy and another for luminescent
microscopy. Aim 1: Build a visible-band tomographic microscope extension to a smartphone. Aim 1A:
Implement 3D cone-beam reconstruction from visible-band sinogram data for samples approximately 10 mm
in size with approximately 10 µm resolution. Aim 1B: Improve the image resolution with a multi-lens optical
system. Aim 2: Implement bioluminescent tomographic microscopy by appropriately modifying the
tomographic reconstruction algorithm. Aim 3: Build two shelf-stable 3D phantoms with features of sizes
varying from 1 µm to 200 µm.
项目概要
三维 (3D) 显微镜为生物研究和医学提供了许多希望
应用程序。然而,目前仅限于资源充足的实验室以及已建立的环境。
基础设施。许多 3D 显微镜技术(例如共焦)依赖于将光聚焦在一系列小
样本内的位置,这需要昂贵且专门的设备。光学投影
断层扫描 (OPT) 是一种利用传统显微镜设备的 3D 成像技术;而不是
OPT 将光聚焦在特定位置,从多个角度对样本进行成像以重建 3D 体积。
对于小型半透明物体(例如小鼠胎儿、寄生虫和昆虫)的 3D 成像来说,这是一种非常有效的方法。
大细菌)。虽然 OPT 可能是一种成本较低的 3D 显微镜方法,但现有系统
仍然昂贵且庞大。我们建议利用无处不在的高质量计算
和智能手机中可用的成像硬件,以制造价格低廉且极其便宜的 OPT 设备
便携的。我们将创建一个智能手机扩展,可以对旋转样本进行稳健成像并使用
手机的计算硬件重建 3D 体积。将采用两种成像方式:
可见光带衰减显微镜(例如明场)和发光显微镜(例如生物发光)。
智能手机扩展的组件要么是 3D 打印、激光切割亚克力,要么是易于商业化的
可用的。因此,该装置的制造成本极低,并且装置的总重量为
非常低;所有组件的总成本将低于 50 美元。扩展的组件很容易
现场组装,允许设备以小包装运输。由于其成本低且
由于尺寸较小,OPT 显微镜还可以作为教育目的的有用工具(例如,作为
涉及光学的本科实验课程)并为断层扫描算法生成真实数据
发展。为了验证该设备,我们将构建两个具有三维特征的模型,允许
我们评估调制传递函数:一个用于衰减显微镜,另一个用于发光
显微镜。目标 1:构建智能手机的可见波段断层扫描显微镜扩展。目标 1A:
根据约 10 mm 的样品的可见波段正弦图数据实施 3D 锥形束重建
尺寸约为 10 µm 分辨率。目标 1B:利用多镜头光学器件提高图像分辨率
系统。目标 2:通过适当修改
断层扫描重建算法。目标 3:构建两个具有尺寸特征的可稳定保存的 3D 模型
范围从 1 µm 到 200 µm。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Dwork其他文献
Nicholas Dwork的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 8.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 8.85万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 8.85万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 8.85万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 8.85万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 8.85万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 8.85万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant