Three-dimensional, Portable, Inexpensive, and Reusable Tomographic Microscopy
三维、便携式、廉价且可重复使用的断层扫描显微镜
基本信息
- 批准号:10721691
- 负责人:
- 金额:$ 8.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAlgorithmsAnimalsAttenuatedBacteriaBiologicalBiologyBiomedical EngineeringCaenorhabditis elegansCellular PhoneChargeConeCoupledDataDetectionDevicesDiagnosticDiameterEducationElementsEquipmentEvaluationExclusionFetusFundingHomeImageImaging DeviceImaging TechniquesImaging technologyInfrastructureInvestigationLaboratoriesLasersLightLightingLocationMedicalMethodsMicroscopeMicroscopyModernizationMotorMusOpticsOrganismParasitesPathologyPerformanceResearchResolutionResourcesRotationRuralSamplingShapesSiteSourceStructureSystemTechniquesTechnologyTelephoneTestingThree-Dimensional ImageThree-Dimensional ImagingTissuesVirus DiseasesVisible RadiationWeightWorkabsorptionalgorithm developmentattenuationbioluminescence imagingcostimaging modalityimprovedinsightlaboratory curriculumlenslight emissionlight transmissionlithographymanufacturemanufacturing costmetermillimeterpolydimethylsiloxaneportabilityreconstructionremote locationtomographytoolundergraduate student
项目摘要
PROJECT SUMMARY
Three-dimensional (3D) microscopy offers many promises for biological investigations and medical
applications. However, it is currently limited to well-resourced laboratories in settings with established
infrastructure. Many 3D microscopy techniques (e.g., confocal) rely on focusing light at an array of small
locations within the sample, which requires expensive and specialized equipment. Optical Projection
Tomography (OPT) is a 3D imaging technique that utilizes traditional microscopy equipment; instead of
focusing the light at specific locations, OPT images a sample from many angles to reconstruct a 3D volume.
It is a very effective method for 3D imaging of small translucent objects (e.g., mouse fetuses, parasites, and
large bacteria). While it is possible for OPT to be a lower-cost method of 3D microscopy, existing systems
remain expensive and large. We propose to take advantage of the ubiquitous and high-quality computing
and imaging hardware available in smartphones to make an OPT device that is inexpensive and extremely
portable. We will create a smartphone extension that robustly images a rotating sample and uses the
phone’s computational hardware to reconstruct the 3D volume. Two imaging modalities will be pursued:
visible-band attenuation microscopy (e.g., brightfield) and luminescent microscopy (e.g., bioluminescent).
The components of the smartphone extension are either 3D printed, laser cut acrylic, or readily commercially
available. Thus, the cost of manufacturing the device is extremely small and the total weight of the device is
very low; the total cost of all components will be less than $50. The components of the extension are easily
assembled on site, permitting the device to be transported with in a small package. Due to its low cost and
size, the OPT microscope can also serve as a useful tool for educational purposes (e.g., as part of an
undergraduate laboratory course involving optics) and for generating real data for tomographic algorithm
development. To validate the device, we will build two phantoms with three-dimensional features that allow
us to evaluate the Modulation Transfer Function: one for attenuation microscopy and another for luminescent
microscopy. Aim 1: Build a visible-band tomographic microscope extension to a smartphone. Aim 1A:
Implement 3D cone-beam reconstruction from visible-band sinogram data for samples approximately 10 mm
in size with approximately 10 µm resolution. Aim 1B: Improve the image resolution with a multi-lens optical
system. Aim 2: Implement bioluminescent tomographic microscopy by appropriately modifying the
tomographic reconstruction algorithm. Aim 3: Build two shelf-stable 3D phantoms with features of sizes
varying from 1 µm to 200 µm.
项目摘要
三维(3D)显微镜为生物学研究和医学研究提供了许多希望。
应用.然而,目前仅限于资源充足的实验室,
基础设施演进许多3D显微技术(例如,共焦)依赖于将光聚焦在一个小的
这需要昂贵的专用设备。光学投影
断层扫描(OPT)是一种3D成像技术,利用传统的显微镜设备;而不是
OPT将光聚焦在特定位置,从多个角度对样品进行成像,以重建3D体积。
这是一种非常有效的方法,用于小型半透明物体(例如,小鼠胎儿、寄生虫和
大细菌)。虽然OPT可能是一种成本较低的3D显微镜方法,但现有系统
仍然昂贵和庞大。我们建议利用无处不在的高质量计算
和成像硬件,使OPT设备,这是廉价的,
移植的.我们将创建一个智能手机扩展,它可以对旋转样本进行鲁棒成像,并使用
手机的计算硬件来重建3D体积。将采用两种成像模式:
可见波段衰减显微术(例如,明场)和发光显微术(例如,生物发光的)。
智能手机扩展的组件可以是3D打印的,激光切割的丙烯酸,也可以是商业上容易的。
available.因此,制造该装置的成本非常小,并且装置的总重量非常小。
非常低;所有组件的总成本将低于50美元。扩展的组件很容易
在现场组装,允许该装置在小包装中运输。由于其低成本和
尺寸,OPT显微镜也可以作为一个有用的工具,用于教育目的(例如,在一项
涉及光学的本科生实验课程)和用于生成用于层析成像算法的真实的数据
发展为了验证该设备,我们将建立两个具有三维特征的幻影,
我们评估调制传递函数:一个用于衰减显微镜,另一个用于发光显微镜。
显微镜目标1:构建智能手机的可见波段断层扫描显微镜扩展。目标1A:
根据约10 mm样本的可见波段正弦图数据实现3D锥束重建
分辨率约为10 µm。目标1B:使用多镜头光学系统提高图像分辨率
系统目的2:通过适当修改生物发光断层成像显微镜,
层析重建算法目标3:构建两个具有尺寸特征的货架稳定的3D体模
从1 μm到200 μm不等。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Dwork其他文献
Nicholas Dwork的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 8.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 8.85万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 8.85万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 8.85万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 8.85万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 8.85万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 8.85万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant