Measuring and Predicting Appropriate Antibiotic Use to Combat Resistant Bacteria
测量和预测对抗耐药细菌的适当抗生素使用
基本信息
- 批准号:10720073
- 负责人:
- 金额:$ 79.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccountingAdverse effectsAgreementAntibiotic ResistanceAntibiotic susceptibilityAntibioticsBacteriaBacterial Antibiotic ResistanceBacterial InfectionsBacteriuriaCenters for Disease Control and Prevention (U.S.)Cessation of lifeClinicalClinical DataClinical Decision Support SystemsClinical MicrobiologyClinical TrialsCollaborationsCollectionCombating Antibiotic Resistant BacteriaCommunitiesComputersConsultationsDataDatabasesDiagnosticElectronic Health RecordElectronicsEvaluationFAIR principlesFeedbackGuidelinesHealthHealth Care CostsHospitalizationHumanIndividualInfectionLearningMachine LearningManualsMeasuresMethodsModelingNatural Language ProcessingOutcome MeasurePatientsPatternPhenotypePredispositionProcessProspective StudiesReal-Time SystemsRecommendationReference StandardsReproducibilityResearchResistanceRiskSelection BiasSiteSpecificitySymptomsSystems IntegrationTest ResultTestingTimeTrainingTranslatingUrinary tract infectionUrineValidationWorkantimicrobial resistant infectionapplication programming interfaceautomated algorithmbacterial resistanceclinical decision supportcombatcostdata harmonizationdata sharingdata standardselectronic data sharingelectronic medical record systemexperienceimprovedinnovationmachine learning methodmachine learning modelmicrobialmodel developmentnovelpersonalized predictionsphenotyping algorithmpoint of carepredictive modelingprospectiveprototyperoutine carestatistical learningstatisticstooltreatment risk
项目摘要
Project Summary: Measuring and Predicting Appropriate Antibiotic Use to Combat Resistant Bacteria
Antimicrobial resistant infections already cause over 2.8 million illnesses and 24,000 deaths per year in
the US alone. The Centers for Disease Control and Prevention (CDC) identify antibiotic prescribing
stewardship as the most important action to slow resistant infections.
Our objective is to produce the methods for clinical decision support systems to reduce both over and
under use of broad-spectrum antibiotics. We will test novel methods to measure and predict better antibiotic
choices on urinary tract infections (UTIs), the most common human bacterial infection that accounts for 25-
50% of antibiotic prescriptions with resistance already exceeding 20% for common antibiotics.
The key challenge is that prescriptions for antibiotics are almost always guesses before definitive test
results are available. This actionable, arbitrary, and ascertainable process where an important decision
(antibiotic prescribing) depends on humans predicting a verifiable result (diagnostic culture results) is ideally
suited for innovative machine learning that can produce Personalized Antibiograms that predict antibiotic
susceptibility for individuals based on patterns learned from large collections of prior examples.
Major scientific barriers to progress in combating antibiotic resistant bacteria include the limited
personalization of conventional tools for prescribing guidance, overly optimistic retrospective evaluations of
predictive models, and the lack of measures for effective diagnostic antibiotic prescribing decisions. With the
combined expertise of our multi-site team (Stanford, UT Southwestern, Harvard), we will overcome these
barriers and achieve the objectives of this proposal through the following aims:
(1a) Multi-site data harmonization and sharing of electronic health records for suspected UTIs
(1b) Develop and validate Personalized Antibiogram prediction models for microbial culture results
(2) Prospective validation of antibiogram models with real-time electronic health record integration
(3) Develop and validate automated methods for electronic phenotyping UTIs
(4) Develop and validate a measure of antibiotic appropriateness and desirability
项目概述:测量和预测抗生素的适当使用以对抗耐药细菌
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JONATHAN H. CHEN其他文献
JONATHAN H. CHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JONATHAN H. CHEN', 18)}}的其他基金
Machine Learning Clinical Order Recommendations for Specialty Consultation Care
专科咨询护理的机器学习临床医嘱建议
- 批准号:
10265158 - 财政年份:2020
- 资助金额:
$ 79.45万 - 项目类别:
相似海外基金
Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
- 批准号:
10591918 - 财政年份:2023
- 资助金额:
$ 79.45万 - 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
- 批准号:
23K15383 - 财政年份:2023
- 资助金额:
$ 79.45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
- 批准号:
23H03556 - 财政年份:2023
- 资助金额:
$ 79.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
- 批准号:
23K17212 - 财政年份:2023
- 资助金额:
$ 79.45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
- 批准号:
22H03519 - 财政年份:2022
- 资助金额:
$ 79.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
- 批准号:
563657-2021 - 财政年份:2022
- 资助金额:
$ 79.45万 - 项目类别:
Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10521849 - 财政年份:2022
- 资助金额:
$ 79.45万 - 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10671022 - 财政年份:2022
- 资助金额:
$ 79.45万 - 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
- 批准号:
10670918 - 财政年份:2022
- 资助金额:
$ 79.45万 - 项目类别:
Downsides of downhill: The adverse effects of head vibration associated with downhill mountain biking on visuomotor and cognitive function
速降的缺点:与速降山地自行车相关的头部振动对视觉运动和认知功能的不利影响
- 批准号:
2706416 - 财政年份:2022
- 资助金额:
$ 79.45万 - 项目类别:
Studentship