Machine Learning Clinical Order Recommendations for Specialty Consultation Care
专科咨询护理的机器学习临床医嘱建议
基本信息
- 批准号:10265158
- 负责人:
- 金额:$ 39.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-25 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Active LearningAcuteAddressAdoptedAdoptionAlgorithmsCaringClinicalClinical DataClinical MedicineComplexComputerized Medical RecordConsultConsultationsDataData ReportingData ScienceDiagnosisDiagnostic testsElectronic MailEndocrinologyEnvironmentEvaluationEventFeedbackFoundationsFutureGoalsGraphHealthcareHealthcare SystemsHematologyHumanHuman ResourcesHyperthyroidismIndividualIndustryInformation RetrievalInpatientsKnowledgeKnowledge DiscoveryLearningLicensingMachine LearningManualsMedicalMethodsModelingModern MedicineMonitorOutcomeOutpatientsPatient-Focused OutcomesPatientsPatternPersonsPharmaceutical PreparationsPhysiciansPrimary Health CarePsychological reinforcementRecommendationRecordsReproducibilityResearchResolutionResourcesRunningSpecialistSuggestionSystemTest ResultTestingThrombocytopeniaTimeTrainingTranscendVisionVisitWorkbaseclinical careclinical decision supportclinical practiceclinical predictorsconvolutional neural networkcrowdsourcingdata streamsdesignexperienceindividual patientinnovationiterative designmedical specialtiesmortalitynovelopen sourceoutcome forecastpersonalized decisionpersonalized predictionspredictive modelingprototypestatistical learningstatisticstoolusability
项目摘要
Summary: Machine Learning Clinical Order Recommendations for Specialty Consultation Care
A future vision of clinical decision support must transcend constraints in scalability, maintainability, and
adaptability. The shortage of 100,000 physicians by 2030 reflects unmet (and unlimited) demand for the
scarcest healthcare resource, clinical expertise. Over 25 million in the US alone have deficient access to
medical specialty care, with delays contributing to 20% higher mortality. There is no quality without access.
Our goal is to develop a radically different paradigm for outpatient specialty consultations by inductively
learning clinical workups embedded in clinical data. We focus on predicting the concrete clinical orders for
medications and diagnostic tests that result from specialty consultations. This can power a tier of fully
automated guides that will enable clinicians to initiate care that would otherwise await in-person specialty visits,
opening access for more patients.
The major scientific barriers are advances in data science and decision support methods for collating
clinical knowledge, with continuous improvement through clinical experience, crowdsourcing, and machine
learning. Our innovative approach is inspired by collaborative filtering algorithms that power “Customers like
you also bought this...” recommender systems with the scalability to answer unlimited queries, maintainability
through statistical learning, and adaptability to respond to evolving clinical practices.
Our team uniquely combines expertise in clinical medicine, electronic medical records, clinical decision
support, statistics and machine learning to enhance medical specialty consultations through aims that seek to:
(1) Develop methods to generate clinical decision support by predicting the clinical orders that will result from
Endocrinology and Hematology specialty consultations; (2) Evaluate and iteratively design clinical collaborative
filtering prototypes based on clinical user input on usability and acceptability; and (3) Determine which consult
clinical order patterns are associated with better results through reinforcement learning and causal inference
frameworks.
Completion of these aims will yield a sustained, powerful impact on clinical information retrieval and knowledge
discovery for synthesizing clinical practices from real-world data. By addressing grand challenges in clinical
decision support, adoption of these methods will fulfill a vision that empowers clinicians to practice to the top of
their license, making healthcare more scalable in reach, responsiveness, and reproducibility
摘要:专业会诊护理的机器学习临床医嘱建议
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JONATHAN H. CHEN其他文献
JONATHAN H. CHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JONATHAN H. CHEN', 18)}}的其他基金
Measuring and Predicting Appropriate Antibiotic Use to Combat Resistant Bacteria
测量和预测对抗耐药细菌的适当抗生素使用
- 批准号:
10720073 - 财政年份:2023
- 资助金额:
$ 39.43万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 39.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 39.43万 - 项目类别:
Standard Grant