Regulation of Cortical Progenitor Mitosis
皮质祖细胞有丝分裂的调节
基本信息
- 批准号:10718190
- 负责人:
- 金额:$ 45.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:Abnormal CellActomyosinApicalBindingBiogenesisCannibalismCell DeathCell NucleusCell SurvivalCellsCellular StructuresCerebral cortexComplexCre driverCytokinesisDNA Sequence AlterationDefectDiseaseEventGene ExpressionGenesGeneticGenetic ModelsGenomicsHeadHippocampusHumanImageKnowledgeLengthMaintenanceMicrocephalyMitosisMitoticMolecularMorphologyMutationMyosin ATPaseNeuroepithelialNeurogliaNeuronsPathogenicityPathologyPhenotypeProcessProductionProteinsRadialRegulationSideSignal TransductionStructureSubstance abuse problemSurfaceTP53 geneTertiary Protein StructureTestingTimeVentricularVirus Diseasesbrain sizecell behaviorcell cortexgenome integrityinsightmolecular asymmetrymouse modelmutantneoplastic cellnerve stem cellnovelpreventprogenitorprotein complexrhostem-like celltumorigenic
项目摘要
This proposal is to delineate the novel function of apical polarity complex proteins in cortical progenitor mitosis
and uncover a new pathogenic mechanism of microcephaly caused by genetic mutation of Pals1 (protein
associated with Lin7 1, also known as MPP5). PALS1, which has been incriminated only recently as a gene
responsible for microcephaly in humans, encodes a component of the evolutionarily conserved apical polarity
complex. Our multiple Pals1 genetic models using different Cre drivers consistently demonstrate overwhelming
cortical cell loss because of compromised cell viability. However, the cellular and molecular defects behind the
massive cell death found in Pals1 mutants remain unknown. Through extensive time-lapse imaging, we found
that Pals1 loss causes abnormally lengthened mitotic progression, consistent with accumulating evidence that
anomalies of mitosis are a significant cause of microcephaly. Remarkably, analyses of mitotic cells in static
images and time-lapse imaging of Pals1-deficient progenitors revealed the emergence of internalized cells with
nuclei inside of mitotic cells. This unusual cellular behavior mimics entosis, which is cell cannibalism utilized by
tumor cells to engulf live neighboring cells for pro- or anti-tumorigenic purposes. It is unknown whether this
extraordinary cellular event can be pathogenic in other diseases such as microcephaly. Therefore, the mouse
model with an entosis-like process in its cortical progenitors will provide important new insights into the
pathogenic mechanisms of microcephaly. Our preliminary study demonstrated that cell-in-cell (CIC) structures
represent a dynamic and mobile cellular entity that is highly associated with lengthened mitosis and abnormalities
in cytokinesis. As in tumor cells, ROCK inhibition completely abrogates CIC structures and restores the normal
length of mitosis. Furthermore, we detected a striking increase of the P53 target, P21, in the Pals1 mutants and
found that genetic elimination of P53 produces a remarkable rescue of cortical size along with substantial
reductions of CIC structures and cell death. These observations lead us to hypothesize that Pals1 loss
induces CIC pathology responsible for mitotic defects that compromise genomic content and cortical
cell viability through the abnormal activation of Rho-ROCK and p53. To test this, we will determine the
biogenesis, maintenance, and elimination of CIC structures and how they impact mitosis and subsequent
genomic integrity and fate of cortical cells (Aim1). Next, we will study how Pals1 deletion/reduction causes
entosis through abnormal Rho-ROCK activation (Aim2). Finally, we will delineate the effect of P53 activation on
CIC formation and Rho-ROCK regulation in Pals1 mutant progenitors (Aim3). The current study provides an
important molecular and cellular clue as to how Pals1 mutation causes such a dramatic cortical phenotype as
the complete absence of the cerebral cortex and hippocampus. Furthermore, for the first time, our study will
establish that an entosis like process can occur in cortical progenitors, providing a novel pathogenic mechanism
by which entotic cell cannibalism produces microcephaly.
这一建议是描绘的新功能的顶端极性复合体蛋白在皮质祖细胞有丝分裂
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seonhee Kim其他文献
Seonhee Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seonhee Kim', 18)}}的其他基金
Antagonistic interaction of polarity complex proteins in cortical development
皮质发育中极性复合蛋白的拮抗相互作用
- 批准号:
10132407 - 财政年份:2019
- 资助金额:
$ 45.42万 - 项目类别:
Antagonistic interaction of polarity complex proteins in cortical development
皮质发育中极性复合蛋白的拮抗相互作用
- 批准号:
10386814 - 财政年份:2019
- 资助金额:
$ 45.42万 - 项目类别:
Regulation Of Cortical Neurogenesis By Apical Complex Proteins
顶端复合蛋白对皮质神经发生的调节
- 批准号:
8550834 - 财政年份:2010
- 资助金额:
$ 45.42万 - 项目类别:
Regulation Of Cortical Neurogenesis By Apical Complex Proteins
顶端复合蛋白对皮质神经发生的调节
- 批准号:
8152199 - 财政年份:2010
- 资助金额:
$ 45.42万 - 项目类别:
Regulation Of Cortical Neurogenesis By Apical Complex Proteins
顶端复合蛋白对皮质神经发生的调节
- 批准号:
7986312 - 财政年份:2010
- 资助金额:
$ 45.42万 - 项目类别:
Regulation Of Cortical Neurogenesis By Apical Complex Proteins
顶端复合蛋白对皮质神经发生的调节
- 批准号:
8319415 - 财政年份:2010
- 资助金额:
$ 45.42万 - 项目类别:
Regulation Of Cortical Neurogenesis By Apical Complex Proteins
顶端复合蛋白对皮质神经发生的调节
- 批准号:
8516826 - 财政年份:2010
- 资助金额:
$ 45.42万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 45.42万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 45.42万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 45.42万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 45.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 45.42万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 45.42万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 45.42万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 45.42万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 45.42万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 45.42万 - 项目类别:
Postdoctoral Fellowships