Structure-informed dissection of cancer-specific intracellular and paracrine networks

癌症特异性细胞内和旁分泌网络的结构知情解剖

基本信息

  • 批准号:
    10729385
  • 负责人:
  • 金额:
    $ 58.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-19 至 2028-08-31
  • 项目状态:
    未结题

项目摘要

Understanding cancer cell-autonomous behavior and recruitment of pro-malignant subpopulations to the tumor microenvironment (TME) is critically dependent on the generation of accurate and comprehensive cellular and intercellular networks. The goal of Project 1 is to develop a novel, integrated, and extensively validated framework to model, manipulate, and dissect cell-cell signaling in the tumor microenvironment involving extracellular ligand-receptor interactions coupled to intracellular signaling networks. Project 1 will build on the methodologies and results generated during the previous CSBC funding period to address multiple challenges by (a) expanding structure-informed prediction of protein-protein interactions (PPI) networks by leveraging novel deep learning approaches, (b) improving signal transduction networks based on the analysis of time-dependent drug perturbation assays, and (c) elucidating ligand/receptor-mediated paracrine interaction networks that mediate recruitment—and possibly reprogramming—of healthy cells to the TME to create a pro-malignant environment. To accomplish these goals, the focus will be on two highly aggressive tumors—colon adenocarcinoma (COAD) and pancreatic ductal adenocarcinoma (PDAC)—for which data, models, reagents, and analytical tools were generated during the prior funding cycle. Project 1 is based on three specific aims. Through the integration of deep learning approaches to protein-protein interactions and the creation of structure-based networks for the Hallmarks of Cancer, Aim 1 will provide a 3D- structural context for the proposed work throughout Project 1. Aim 2 will define phosphoproteomics-based intracellular signaling networks and describe their response to drug perturbations. Aim 3 will define paracrine- based cell-cell signaling networks and validate them with a novel organs-on-a-chip platform. The impact of Project 1 will derive largely from its innovative approaches, which include the use of structure- based analyses to model protein interaction networks; the integration of structure-based modeling with deep learning algorithms, including Protein Language Models, to provide models for essentially all interactions that will be predicted and observed in the proposal; the inference of phosphoproteomics-based phosphoprotein activity to provide critical time-dependent and perturbation-sensitive components of cellular signaling; the incorporation of paracrine signaling; and novel experimental validation technologies including matched phosphoproteomic and transcriptional profiles, and the bioengineering of tumors and normal cells within interconnected micro-chambers to better recapitulate tissue physiology in vivo. The major deliverable for Project 1 is an interrogable and holistic model for coupled intra- and inter-cellular signaling which will serve as the foundation for the entire center by enabling the dissection of the mechanisms contributing to the stability of tumor-related cell states, their ligand/receptor-mediated interaction with other subpopulations in the TME, and their pharmacologically actionable molecular dependencies.
了解癌细胞的自主行为和促癌亚群对肿瘤的募集 微环境(TME)在很大程度上依赖于准确而全面的细胞和 蜂窝间网络。项目1的目标是开发一种新的、集成的、经过广泛验证的 对肿瘤微环境中的细胞-细胞信号进行建模、操作和分析的框架,包括 耦合到细胞内信号网络的细胞外配体-受体相互作用。项目1将建立在 为应对多重挑战而在上一个CSBC供资期间产生的方法和成果 通过(A)利用新技术扩展蛋白质-蛋白质相互作用(PPI)网络的结构信息预测 深度学习方法,(B)基于时间相关性分析的改进信号转导网络 药物扰动分析,以及(C)阐明配体/受体介导的旁分泌相互作用网络 调节健康细胞的募集--可能还有重新编程--到TME,以创建一个亲恶性的 环境。为了实现这些目标,重点将放在两种高度侵袭性的肿瘤上--结肠 腺癌(CoAD)和胰腺导管腺癌(PDAC)-其数据、模型、试剂 分析工具是在上一个供资周期中产生的。 项目1基于三个具体目标。通过整合蛋白质-蛋白质的深度学习方法 针对癌症特征的相互作用和基于结构的网络的创建,AIM 1将提供3D- 整个项目1中拟议工作的结构背景。目标2将定义基于磷酸蛋白质组学 细胞内信号网络,并描述它们对药物扰动的反应。目标3将定义旁分泌- 基于细胞-细胞信号网络,并用一种新型的芯片上器官平台进行验证。 项目1的影响将很大程度上来自其创新办法,其中包括使用结构-- 基于分析的蛋白质相互作用网络建模;基于结构的建模与深度分析的结合 学习算法,包括蛋白质语言模型,以提供基本上所有相互作用的模型 将在提案中预测和观察;基于磷蛋白质组学的磷蛋白的推断 活动,以提供关键的时间依赖和扰动敏感的细胞信号成分; 整合旁分泌信号;以及新的实验验证技术,包括Matted 磷蛋白组学和转录图谱,以及肿瘤和正常细胞的生物工程 相互连接的微腔,以更好地概括体内的组织生理学。 项目1的主要成果是细胞内和细胞间耦合的可询问的整体模型 通过对机制的剖析,将作为整个中心的基础的信号 有助于肿瘤相关细胞状态的稳定,它们的配体/受体介导的与 TME中的亚群及其在药理上可操作的分子依赖。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BARRY H HONIG其他文献

BARRY H HONIG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BARRY H HONIG', 18)}}的其他基金

Genome-wide structure-based analysis of protein-protein interactions and networks
基于全基因组结构的蛋白质-蛋白质相互作用和网络分析
  • 批准号:
    10320837
  • 财政年份:
    2021
  • 资助金额:
    $ 58.09万
  • 项目类别:
Genome-wide structure-based analysis of protein-protein interactions and networks
基于全基因组结构的蛋白质-蛋白质相互作用和网络分析
  • 批准号:
    10542796
  • 财政年份:
    2021
  • 资助金额:
    $ 58.09万
  • 项目类别:
Genome-wide structure-based analysis of protein-protein interactions and networks
基于全基因组结构的蛋白质-蛋白质相互作用和网络分析
  • 批准号:
    10809330
  • 财政年份:
    2021
  • 资助金额:
    $ 58.09万
  • 项目类别:
Columbia
哥伦比亚
  • 批准号:
    8151806
  • 财政年份:
    2010
  • 资助金额:
    $ 58.09万
  • 项目类别:
Training Program in Computational Biology
计算生物学培训计划
  • 批准号:
    7885867
  • 财政年份:
    2009
  • 资助金额:
    $ 58.09万
  • 项目类别:
Training Program in Computational Biology
计算生物学培训计划
  • 批准号:
    8106252
  • 财政年份:
    2008
  • 资助金额:
    $ 58.09万
  • 项目类别:
Training Program in Computational Biology
计算生物学培训计划
  • 批准号:
    8551293
  • 财政年份:
    2008
  • 资助金额:
    $ 58.09万
  • 项目类别:
Training Program in Computational Biology
计算生物学培训计划
  • 批准号:
    7870435
  • 财政年份:
    2008
  • 资助金额:
    $ 58.09万
  • 项目类别:
Training Program in Computational Biology
计算生物学培训计划
  • 批准号:
    7345666
  • 财政年份:
    2008
  • 资助金额:
    $ 58.09万
  • 项目类别:
Training Program in Computational Biology
计算生物学培训计划
  • 批准号:
    7637778
  • 财政年份:
    2008
  • 资助金额:
    $ 58.09万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 58.09万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 58.09万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.09万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.09万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 58.09万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.09万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 58.09万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 58.09万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 58.09万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.09万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了