MOSAIC: Imaging Human Tissue State Dynamics In Vivo
MOSAIC:体内人体组织状态动态成像
基本信息
- 批准号:10729423
- 负责人:
- 金额:$ 34.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-18 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAutomobile DrivingBiological MarkersBiopsyBrainBrain NeoplasmsCell modelCellsClinicalDiagnosisDiseaseDisease ProgressionEpidermal Growth Factor ReceptorFacility AccessesGenomic SegmentGlioblastomaGliomaGuidelinesHumanImageImage AnalysisImmuneImmune TargetingImmune responseImmunocompetentImmunooncologyImmunotherapyInflammationInflammatoryMagnetic Resonance ImagingMalignant - descriptorMathematicsMeasuresMediatingModelingMolecularMonitorNatureOncologyOutcomePatient-Focused OutcomesPatientsPhenotypePhysiologicalPopulationPrimary Brain NeoplasmsProliferatingRecurrenceResidual NeoplasmResourcesSamplingSignal TransductionStudy modelsSystems AnalysisTherapeuticTimeTissue ModelTissue SampleTissuesTreatment ProtocolsWorkangiogenesisclinical imagingcohortcosthuman imaginghuman tissueimaging facilitiesimmunotherapy clinical trialsimprovedin vivoindividual patientindividualized medicineneoplastic cellnoninvasive diagnosisnovelpatient safetyphysical propertypredictive modelingquantitative imagingradiomicsresponsestandard of caretooltreatment responsetumortumor behavior
项目摘要
SUMMARY: PROJECT 2: IMAGING THE DYNAMIC TISSUE STATE IN PATIENTS IN VIVO
With a dismal median survival of 16 months, glioblastoma (GBM) is the most common malignant primary brain
tumor within adult patients. Response to the standard-of-care (SOC) is widely variable across patients.
Identifying optimal targeted treatments traditionally relies on tissue sampling to identify patient-relevant targets.
Yet, tissue sampling has many severe limitations and costs (time, money, and facility access), and ultimately
provides only limited scope both spatially and temporally thus always leaving behind residual tumor cells that
have not been sampled. Multi-parametric magnetic resonance imaging (MRI) measures an array of
complementary physiologic biomarkers that correspond with diverse tumor phenotypes (e.g., proliferation,
inflammation, angiogenesis), and it serves as the clinical mainstay for monitoring therapeutic response and
disease progression. As tumor cell signaling may be mediated through interactions (i.e.,“cross-talk”) with
surrounding non-tumoral cells in the regional microenvironment, there is a critical need to define the degree to
which this cross-talk influences local tissue state, phenotypic expression, and disease
progression. Understanding these associations should help refine the clinical interpretations of imaging
phenotypes to improve guidelines for non-invasive diagnosis and disease monitoring. There is an urgent need
for image-based radiomics tools that can 1) predict which patients will respond to a given treatment and 2) can
observe/track that response over time.
Overall Hypothesis: Tissue states, represented as combinations of cellular constituents and phenotypes, can be
resolved on clinical imaging to a level sufficient to identify transitions in these states with and without treatments
in individual patients in vivo.
Our two aims in this project investigate this hypothesis in two separate settings, Aim 1) Standard of Care, Aim
2) Immunotherapy. In these aims, we will characterize the landscape of phenotypic states, build image-based
models to predict tissue state from images, investigate how predicted tumor states correspond with outcomes,
quantify dynamics of states from pre- to post-therapy, and finally build mechanistic models to understand the
critical driving differences in the flow of cells in local phenotype state space leading to the overall tumor state.
总结:项目2:患者体内动态组织状态成像
胶质母细胞瘤(GBM)是最常见的恶性原发性脑肿瘤,平均生存期为16个月,
成年患者的肿瘤。不同患者对标准治疗(SOC)的反应差异很大。
识别最佳靶向治疗传统上依赖于组织采样来识别患者相关的靶标。
然而,组织取样具有许多严重的限制和成本(时间、金钱和设施访问),并且最终
仅在空间和时间上提供有限的范围,因此总是留下残留的肿瘤细胞,
没有被采样。多参数磁共振成像(MRI)测量一系列
对应于不同肿瘤表型的互补生理生物标记(例如,扩散,
炎症、血管生成),并且它作为监测治疗反应的临床支柱,
疾病进展。因为肿瘤细胞信号传导可以通过相互作用(即,“串扰”),
在局部微环境中,围绕非肿瘤细胞,迫切需要定义
这种串扰影响局部组织状态、表型表达和疾病
进展了解这些关联有助于完善影像学的临床解释
表型,以改善非侵入性诊断和疾病监测的指导方针。迫切需要
对于基于图像的放射组学工具,其可以1)预测哪些患者将对给定的治疗做出反应,并且2)可以
随着时间的推移观察/跟踪该响应。
总体假设:组织状态,表示为细胞成分和表型的组合,可以是
在临床成像上解决,足以识别这些状态在治疗和不治疗的情况下的转变
in individual个别patients患者in vivo体内.
我们在本项目中的两个目标是在两个不同的环境中研究这一假设,目标1)护理标准,目标
2)免疫疗法在这些目标中,我们将描述表型状态的景观,建立基于图像的
从图像中预测组织状态的模型,研究预测的肿瘤状态如何与结果相对应,
量化从治疗前到治疗后的状态动态,并最终建立机械模型来了解
局部表型状态空间中细胞流动的关键驱动差异导致整体肿瘤状态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristin R Swanson其他文献
Image-based metric of invasiveness predicts response to adjuvant temozolomide for primary glioblastoma
基于图像的侵袭性指标可预测替莫唑胺辅助治疗原发性胶质母细胞瘤的反应
- DOI:
10.1101/509281 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
S. Massey;Haylye White;P. Whitmire;Tatum Doyle;S. Johnston;K. Singleton;P. Jackson;A. Hawkins;B. Bendok;A. Porter;S. Vora;J. Sarkaria;M. Mrugala;Kristin R Swanson - 通讯作者:
Kristin R Swanson
Complementary role of mathematical modeling in preclinical glioblastoma: differentiating poor drug delivery from drug insensitivity
数学模型在临床前胶质母细胞瘤中的补充作用:区分药物输送不良和药物不敏感
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
J. Urcuyo;S. Massey;A. Hawkins;B. Marin;D. Burgenske;J. Sarkaria;Kristin R Swanson - 通讯作者:
Kristin R Swanson
Uncertainty Quantification in Radiogenomics: EGFR Amplification in Glioblastoma
放射基因组学中的不确定性定量:胶质母细胞瘤中的 EGFR 扩增
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Leland S. Hu;Lujia Wang;A. Hawkins;Jenny M. Eschbacher;K. Singleton;P. Jackson;K. Clark;Christopher P. Sereduk;Sen Peng;Panwen Wang;Junwen Wang;L. Baxter;Kris A. Smith;Gina L. Mazza;Ashley M. Stokes;B. Bendok;Richard S. Zimmerman;C. Krishna;Alyx Porter;M. Mrugala;J. Hoxworth;Teresa Wu;Nhan L Tran;Kristin R Swanson;Jing Li - 通讯作者:
Jing Li
Response to "Tumor cells in search for glutamate: an alternative explanation for increased invasiveness of IDH1 mutant gliomas".
对“肿瘤细胞寻找谷氨酸:IDH1 突变神经胶质瘤侵袭性增加的另一种解释”的回应。
- DOI:
10.1093/neuonc/nou290 - 发表时间:
2014 - 期刊:
- 影响因子:15.9
- 作者:
Andrew D. Trister;Jacob Scott;Russell Rockne;Kevin Yagle;S. Johnston;A. Hawkins;A. Baldock;Kristin R Swanson - 通讯作者:
Kristin R Swanson
Kristin R Swanson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristin R Swanson', 18)}}的其他基金
Project 1: Modeling the Interface between Non-invasive Imaging and Drug Distribution
项目 1:对无创成像和药物分配之间的接口进行建模
- 批准号:
9187652 - 财政年份:2016
- 资助金额:
$ 34.29万 - 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
- 批准号:
8605773 - 财政年份:2012
- 资助金额:
$ 34.29万 - 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
- 批准号:
8123111 - 财政年份:2009
- 资助金额:
$ 34.29万 - 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
- 批准号:
8515534 - 财政年份:2009
- 资助金额:
$ 34.29万 - 项目类别:
E=mc2: Environment-Driven Mathematical Modeling for Clinical Cancer Imaging
E=mc2:环境驱动的临床癌症成像数学模型
- 批准号:
8555189 - 财政年份:2009
- 资助金额:
$ 34.29万 - 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
- 批准号:
7730125 - 财政年份:2009
- 资助金额:
$ 34.29万 - 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
- 批准号:
7905757 - 财政年份:2009
- 资助金额:
$ 34.29万 - 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
- 批准号:
8309373 - 财政年份:2009
- 资助金额:
$ 34.29万 - 项目类别:
相似海外基金
Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
- 批准号:
20K07947 - 财政年份:2020
- 资助金额:
$ 34.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
- 批准号:
17K19824 - 财政年份:2017
- 资助金额:
$ 34.29万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
- 批准号:
25330237 - 财政年份:2013
- 资助金额:
$ 34.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
- 批准号:
23591741 - 财政年份:2011
- 资助金额:
$ 34.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)