Machine Learning and Multiomics for Predictive Models and Biomarker Discovery in Preterm Infants.
用于早产儿预测模型和生物标志物发现的机器学习和多组学。
基本信息
- 批准号:10729640
- 负责人:
- 金额:$ 64.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdolescentAgeArtificial IntelligenceBioinformaticsBiological MarkersBlood specimenBronchopulmonary DysplasiaChildClinicalClinical DataCollaborationsCollectionData SetDatabasesDigestive System DisordersDiseaseEarly InterventionEnrollmentFecesFunctional disorderFutureGenetic TranscriptionGoalsHealthHistone DeacetylationImmunityInfantInflammationInterventionKnowledgeLifeMachine LearningMediatingMedicineMetabolicMetabolic PathwayMetabolismMissionModelingMonitorMorbidity - disease rateMultiomic DataNational Institute of Child Health and Human DevelopmentNational Institute of Diabetes and Digestive and Kidney DiseasesNecrotizing EnterocolitisNeonatalNeonatologyOutcomePathogenesisPathway interactionsPatient-Focused OutcomesPatientsPediatric HospitalsPremature InfantProspective StudiesProspective cohortPublic HealthResearchResearch DesignRetinopathy of PrematurityRetrospective cohortSamplingScienceSepsisSurvivorsTechniquesTestingTexasTraditional MedicineUnited States National Institutes of HealthUniversitiesUrineValidationVermontVery Low Birth Weight InfantVolatile Fatty Acidsbiomarker discoveryclinical predictive modelcohortcollegedisabilitydysbiosishigh riskhost microbiomeimprovedinnovationintraventricular hemorrhageknowledge baseknowledgebaselate onset sepsismedical schoolsmetabolomemicrobialmicrobial diseasemicrobiomemortalitymultiple omicsnovelprecision medicinepredictive markerpredictive modelingprematureprognosticationprospectivesurvival predictiontool
项目摘要
PROJECT SUMMARY
Preterm infants born at < 32 weeks and <1500 g (very low birth weight, VLBW) suffer from increased mortality
(10-15%) and less than 70% survive without major morbidity. Microbial dysbiosis has been associated with
major preterm morbidities but the microbial metabolites or the mechanisms by which they impact
pathophysiology, survival and morbidity is not known. The purpose of this proposal is to develop holistic
prediction models integrating clinical data and multi-omic signatures, aid biomarker discovery and advance the
paradigm in Neonatal Medicine from traditional to targeted precision medicine. The overarching hypothesis is
that integrating metabolic and multi-omic signatures with clinical data will reliably predict survival and major
morbidity in preterm, VLBW infants. The long-term goal of this research is to establish causal association
between identified microbial metabolites and disease in preterm infants, contribute to the knowledgebase of
microbial metabolites and improve preterm outcomes. We will test our hypothesis using the following Specific
Aims; Aim 1) Leverage machine learning techniques to develop clinical prediction models for mortality and
specific morbidities in preterm, VLBW infants: We will test the hypothesis, that a model integrating clinical
variables in the first 2 wks. of age, will accurately predict mortality, and morbidities of late-onset sepsis, NEC,
BPD, severe ROP and severe IVH. We will employ a retrospective cohort from the Vermont Oxford Database
(VON) from Texas Children’s Hospital, (n= 3385 VLBW infants). We will validate the clinical predictive models
derived from aim 1A with the prospective clinical data from the first 2 weeks, from Aim 2 (n=300), Aim 2)
Delineate microbial metabolites and multi-omic signatures that differentiate preterm VLBW infants with
mortality and morbidity, refine predictive models and enhance biomarker discovery: We will test the hypothesis
that integrating multi-omics signatures with clinical data using machine learning techniques will refine our
predictive models (mortality and specific morbidities of late-onset sepsis, NEC, BPD, ROP and IVH/PVL) for
better accuracy and enhance biomarker discovery. We will accomplish this in a prospective study design of
enrolled preterm (< 32weeks), VLBW infants (n= 300) and collect stool, urine and blood samples, longitudinally
twice a week for 2 weeks of age. We anticipate identifying known and novel metabolites and delineating
metabolic pathways hitherto unidentified that influence preterm pathophysiology and outcomes. Holistic
prediction models using information from the first 2 weeks of life will enable us to introduce interventions early
to improve health trajectories and patient outcomes, thereby facilitating the paradigm of proactive precision
medicine in Neonatology. The impact of our results extend beyond the field of neonatology, to other patients
and diseases where microbial dysbiosis and altered metabolome are key factors in the pathogenesis.
项目总结
32周和1500克(极低出生体重,VLBW)出生的早产儿死亡率增加
(10%-15%),不到70%的人存活下来,没有大的发病率。微生物的微生态失调与
主要的早产儿疾病,但微生物代谢物或其影响机制
病理生理学、存活率和发病率尚不清楚。这项建议的目的是发展全面的
结合临床数据和多组特征的预测模型,有助于生物标记物的发现和推进
新生儿医学从传统到靶向精确医学的范式。最重要的假设是
将代谢和多组学特征与临床数据相结合将可靠地预测生存率和主要
早产儿、极低出生体重儿的发病率。这项研究的长期目标是建立因果关系
已识别的微生物代谢物与早产儿疾病之间的关系,有助于
微生物代谢物和改善早产结局。我们将使用以下具体内容来测试我们的假设
目标1)利用机器学习技术开发死亡率和
早产儿、极低出生体重儿的特殊发病率:我们将检验这一假设,即结合临床的模型
前两周的变量。年龄,将准确预测死亡率和迟发性败血症,NEC,
BPD、重度ROP和重度IVH。我们将使用佛蒙特州牛津数据库中的回溯性队列
(Von)来自德克萨斯州儿童医院,(n=3385名极低出生体重儿)。我们将验证临床预测模型
来自目标1的前瞻性临床数据来自目标2(n=300),目标2)
描述微生物代谢物和多组学特征以区分早产儿和
死亡率和发病率、改进预测模型和加强生物标记物发现:我们将检验这一假设
使用机器学习技术将多组学签名与临床数据相结合将完善我们的
预测模型(迟发性脓毒症的死亡率和特定发病率、NEC、BPD、ROP和IVH/PVL)
更好的准确性和加强生物标志物的发现。我们将在一项前瞻性研究设计中实现这一点
登记早产(32周),极低出生体重儿(n=300),并纵向收集粪便、尿液和血样
每周两次,持续两周。我们期待着识别已知和新的代谢物并描绘出
影响早产病理生理和结局的代谢途径迄今尚未确定。整体性
使用出生前两周的信息的预测模型将使我们能够及早引入干预措施
改善健康轨迹和患者结果,从而促进前瞻性精确度的范例
新生儿科医学。我们的研究结果不仅影响到新生儿领域,还影响到其他患者。
以及微生物代谢失调和代谢改变是发病机制的关键因素的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohan Pammi其他文献
Mohan Pammi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohan Pammi', 18)}}的其他基金
Microbiome Induced Epigenetic Changes in Intestinal Inflammation and Necrotizing Enterocolitis
微生物组诱导肠道炎症和坏死性小肠结肠炎的表观遗传变化
- 批准号:
10198959 - 财政年份:2020
- 资助金额:
$ 64.08万 - 项目类别:
Metagenomics of the circulating blood microbiome and systemic inflammation in preterm infants
早产儿循环血液微生物组和全身炎症的宏基因组学
- 批准号:
9894147 - 财政年份:2020
- 资助金额:
$ 64.08万 - 项目类别:
Microbiome Induced Epigenetic Changes in Intestinal Inflammation and Necrotizing Enterocolitis
微生物组诱导肠道炎症和坏死性小肠结肠炎的表观遗传变化
- 批准号:
9893335 - 财政年份:2020
- 资助金额:
$ 64.08万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Supporting teachers and teaching in the age of Artificial Intelligence
支持人工智能时代的教师和教学
- 批准号:
DP240100111 - 财政年份:2024
- 资助金额:
$ 64.08万 - 项目类别:
Discovery Projects
Socially Responsible Insurance in the Age of Artificial Intelligence
人工智能时代的社会责任保险
- 批准号:
LP210200818 - 财政年份:2023
- 资助金额:
$ 64.08万 - 项目类别:
Linkage Projects
PRESAGE - PREdictions and Stimulations related to AGE: capitalizing on artificial intelligence to predict the functional cognitive age of the elderly in order to establish an adequate diagnosis for an optimized cognitive intervention.
PRESAGE - 与 AGE 相关的预测和刺激:利用人工智能预测老年人的功能认知年龄,以便为优化认知干预建立充分的诊断。
- 批准号:
474259 - 财政年份:2022
- 资助金额:
$ 64.08万 - 项目类别:
Fellowship Programs
PRESAGE - PREdictions and Stimulations related to AGE: capitalizing on artificial intelligence to predict the functional cognitive age of seniors in order to establish an adequate diagnosis for an optimized cognitive intervention.
PRESAGE - 与年龄相关的预测和刺激:利用人工智能预测老年人的功能认知年龄,以便为优化认知干预建立充分的诊断。
- 批准号:
476202 - 财政年份:2022
- 资助金额:
$ 64.08万 - 项目类别:
CyberCorps Scholarship for Service: Cybersecurity Workforce Preparation in the Age of Artificial Intelligence
CyberCorps 服务奖学金:人工智能时代的网络安全劳动力准备
- 批准号:
2146497 - 财政年份:2022
- 资助金额:
$ 64.08万 - 项目类别:
Continuing Grant
EAGER: SaTC-EDU: Cybersecurity Education in the Age of Artificial Intelligence: A Novel Proactive and Collaborative Learning Paradigm
EAGER:SaTC-EDU:人工智能时代的网络安全教育:一种新颖的主动协作学习范式
- 批准号:
2114974 - 财政年份:2021
- 资助金额:
$ 64.08万 - 项目类别:
Standard Grant
Elucidation of age-related macular degeneration pathology by fundus image and cytokine concentrations using artificial intelligence
使用人工智能通过眼底图像和细胞因子浓度阐明年龄相关性黄斑变性病理学
- 批准号:
21K09751 - 财政年份:2021
- 资助金额:
$ 64.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: EAGER: SaTC-EDU: Safeguarding STEM Education and Scientific Knowledge in the Age of Hyper-Realistic Data Generated Using Artificial Intelligence
合作研究:EAGER:SaTC-EDU:在人工智能生成的超现实数据时代保护 STEM 教育和科学知识
- 批准号:
2039613 - 财政年份:2020
- 资助金额:
$ 64.08万 - 项目类别:
Standard Grant
An artificial intelligence (AI) Macular Disease treatment decision tool for patients with wet age-related macular degeneration, diabetic macular oedema, and retinal vein occlusion.
一种人工智能 (AI) 黄斑疾病治疗决策工具,适用于患有湿性年龄相关性黄斑变性、糖尿病性黄斑水肿和视网膜静脉阻塞的患者。
- 批准号:
77644 - 财政年份:2020
- 资助金额:
$ 64.08万 - 项目类别:
Collaborative R&D
Collaborative Research: EAGER: SaTC-EDU: Safeguarding STEM Education and Scientific Knowledge in the Age of Hyper-Realistic Data Generated Using Artificial Intelligence
合作研究:EAGER:SaTC-EDU:在人工智能生成的超现实数据时代保护 STEM 教育和科学知识
- 批准号:
2039614 - 财政年份:2020
- 资助金额:
$ 64.08万 - 项目类别:
Standard Grant