Mitochondrial metabolism and the Lon-PDH axis
线粒体代谢和 Lon-PDH 轴
基本信息
- 批准号:10728404
- 负责人:
- 金额:$ 7.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:ATP Synthesis PathwayAcetyl Coenzyme AAcetylationAnimal ModelArchitectureAstrocytesAtrophicBrainCalibrationCarbohydratesCatabolismCellsCellular StressCerebrumCitric Acid CycleComplexDataDefectDietary InterventionDiseaseEnergy MetabolismEnergy-Generating ResourcesEnzyme InhibitionErythrocytesFailureFatty AcidsFibroblastsFunctional disorderGatekeepingGenerationsGenesGlucoseGlutamineGlycolysisGlycolysis InhibitionGoalsHeart DiseasesHumanImpairmentInvestigationKetone BodiesKnowledgeLeucineLinkMalignant NeoplasmsMeasuresMediatingMedium chain fatty acidMetabolicMetabolismMissense MutationMitochondriaModelingModificationMolecularMolecular MachinesMutationNerve DegenerationNeurodegenerative DisordersNeurologicNeurologic DysfunctionsNeuronsOutcomeOxidative PhosphorylationPDH kinaseParentsPathogenicityPathway interactionsPatientsPhosphorylationPositioning AttributePost-Translational Protein ProcessingProductionProlineProtein DephosphorylationProteinsProteolysisProteomicsPyruvatePyruvate Dehydrogenase (Lipoamide)-PhosphatasePyruvate Dehydrogenase ComplexPyruvate Dehydrogenase E1ReactionRegulationSiblingsSkinSterol O-AcyltransferaseTestingTranscriptVariantWorkamino acid metabolismbrain celldihydrolipoamide dehydrogenasedihydrolipoyllysine-residue acetyltransferaseendopeptidase Laexperimental studyfatty acid oxidationhigh throughput screeninginduced pluripotent stem cellintermolecular interactionmetabolomicsmitochondrial metabolismmutantnoveloxidationpharmacologicprogramsproteostasispyruvate dehydrogenaseresponsestem cell differentiationtherapeutic proteinuptake
项目摘要
The human Lon protease is a master regulator of mitochondrial proteostasis, which is essential for
regulating mitochondrial energy metabolism and mitigating cell stress. We recently identified a novel
pathogenic variant in the LONP1 gene encoding Lon, in two siblings with profound neurologic
impairment, cerebral and cerebellar atrophy, in which proline at position 761 was replaced by leucine
(Lon-P761L). Primary skin fibroblasts from these siblings, showed that the activity of pyruvate
dehydrogenase (PDH) was substantially reduced. PDH deficiency was caused by the failure of Lon-P761L to degrade the phosphorylated E1a subunit of PDH, which accumulates and inhibits PDH
activity. PDH is the central gatekeeper linking glycolysis to the tricarboxylic acid (TCA) cycle, and is
also a key regulatory node for glucose and fatty acid catabolism. Our long term goal is to elucidate why
homozygous Lon-P761L expression causes severe neurologic dysfunction and neurodegeneration.
Glucose is the brain’s principal source of energy. Neurons generate ATP almost exclusively by glucose
oxidization, thus fully functional PDH activity is crucial. Astrocytes by contrast, have broader metabolic
capacity and supply neurons with lactate, glutamine and ketone bodies, which are used to form acetyl
CoA and TCA cycle intermediates required for glucose oxidation. We hypothesize that wild type Lon
regulates the architecture and activities of the PDH complex, and modulates upstream and downstream
effectors, to calibrate mitochondrial metabolism and energetics. In this project, we will employ patient-and parent-derived fibroblasts, and also fibroblasts that have been reprogrammed to generate induced
pluripotent stem cells (iPSCs). These iPSCs will be differentiated into neurons and astrocytes. Using
the patient- and parent- derived fibroblasts, Aim 1 will test the hypothesis that Lon-mediated degradation
regulates the architecture and activity of the PDH complex. Aim 2 will identify the up- and down-stream
modulators of the Lon-PDH axis, which are altered in cells expressing wild type Lon versus Lon-P761L.
In Aim 3, we will investigate the regulation of PDH by Lon in iPSCs differentiated into neurons and
astrocytes. Our investigation will establish new molecular mechanisms for the Lon-dependent
regulation of PDH. The knowledge gained will also help to identify potential therapeutic protein targets
(e.g. PDK, PDP, Lon), pharmacologic and dietary interventions for increasing PDH activity and/or for
treating PDH deficiency associated with Lon dysfunction. These outcomes have a broader impact for
understanding how PDH activity and mitochondrial metabolism can be calibrated in both rare and more
common disorders such as heart disease, cancer and neurodegeneration.
人类Lon蛋白水解酶是线粒体蛋白平衡的主要调节者,线粒体蛋白稳定是
调节线粒体能量代谢,缓解细胞应激。我们最近确定了一部小说
两个神经系统疾病严重的同胞中编码LON的LONP1基因的致病变异
损伤,大脑和小脑萎缩,其中761位的脯氨酸被亮氨酸取代
(LON-P761L)。这些兄弟姐妹的原代皮肤成纤维细胞显示,丙酮酸的活性
脱氢酶(PDH)显著降低。PDH缺乏的原因是Lon-P761L不能降解PDH的磷酸化E1a亚单位,该亚单位积聚并抑制PDH
活动。PDH是连接糖酵解和三羧酸(TCA)循环的中央守门人,它是
也是葡萄糖和脂肪酸分解代谢的关键调节节点。我们的长期目标是阐明为什么
Lon-P761L纯合子表达会导致严重的神经功能障碍和神经变性。
葡萄糖是大脑的主要能量来源。神经元几乎完全由葡萄糖产生三磷酸腺苷
氧化,因此全功能的PDH活性是至关重要的。相比之下,星形胶质细胞具有更广泛的新陈代谢
乳酸、谷氨酰胺和酮体的容量和供应神经元,这些小体用于形成乙酰基
葡萄糖氧化所需的辅酶A和三氯乙酸循环中间体。我们假设野生型Lon
调节PDH复合体的结构和活动,并调节上游和下游
效应器,以校准线粒体新陈代谢和能量学。在这个项目中,我们将使用患者和父母来源的成纤维细胞,以及已经被重新编程以产生诱导的成纤维细胞
多能干细胞(IPSCs)。这些IPSCs将分化为神经元和星形胶质细胞。vbl.使用
患者和父母来源的成纤维细胞,Aim 1将测试Lon介导的降解的假设
调节PDH复合体的结构和活性。目标2将确定上行和下行
Lon-PDH轴的调节器,在表达野生型Lon和Lon-P761L的细胞中发生变化。
在目标3中,我们将研究Lon对IPSCs分化为神经元和
星形胶质细胞。我们的研究将建立新的Lon依赖的分子机制
PDH的调节。所获得的知识也将有助于确定潜在的治疗蛋白质靶点。
(例如,PDK、PDP、LON),增加PDH活性的药理和饮食干预和/或
治疗PDH缺乏症合并Lon功能障碍。这些结果对以下方面有更广泛的影响
了解PDH活性和线粒体代谢如何在罕见和更多的患者中得到校准
常见疾病,如心脏病、癌症和神经退行性变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CAROLYN K SUZUKI其他文献
CAROLYN K SUZUKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CAROLYN K SUZUKI', 18)}}的其他基金
Mitochondrial metabolism and the Lon-PDH axis
线粒体代谢和 Lon-PDH 轴
- 批准号:
10594025 - 财政年份:2020
- 资助金额:
$ 7.73万 - 项目类别:
Mitochondrial metabolism and the Lon-PDH axis
线粒体代谢和 Lon-PDH 轴
- 批准号:
10620384 - 财政年份:2020
- 资助金额:
$ 7.73万 - 项目类别:
Mitochondrial metabolism and the Lon-PDH axis
线粒体代谢和 Lon-PDH 轴
- 批准号:
10379257 - 财政年份:2020
- 资助金额:
$ 7.73万 - 项目类别:
Regulating mtDNA and mtRNA dynamics by the mitochondrial AAA+ Lon protease
通过线粒体 AAA Lon 蛋白酶调节 mtDNA 和 mtRNA 动力学
- 批准号:
9187845 - 财政年份:2015
- 资助金额:
$ 7.73万 - 项目类别:
Mitochondrial chaperones mortalin and Tid1 in protein degradation
蛋白质降解中的线粒体伴侣 mortalin 和 Tid1
- 批准号:
8707617 - 财政年份:2011
- 资助金额:
$ 7.73万 - 项目类别:
Mitochondrial chaperones mortalin and Tid1 in protein degradation
蛋白质降解中的线粒体伴侣 mortalin 和 Tid1
- 批准号:
8192595 - 财政年份:2011
- 资助金额:
$ 7.73万 - 项目类别:
Mitochondrial chaperones mortalin and Tid1 in protein degradation
蛋白质降解中的线粒体伴侣 mortalin 和 Tid1
- 批准号:
8311645 - 财政年份:2011
- 资助金额:
$ 7.73万 - 项目类别:
High throughput screening assays to identify small molecules that target the ClpX
通过高通量筛选分析来识别靶向 ClpX 的小分子
- 批准号:
7994954 - 财政年份:2010
- 资助金额:
$ 7.73万 - 项目类别:
High throughput screens for modulators of mitochondrial ATP-dependent proteolysis
高通量筛选线粒体 ATP 依赖性蛋白水解调节剂
- 批准号:
7914479 - 财政年份:2009
- 资助金额:
$ 7.73万 - 项目类别:
相似海外基金
The molecular basis for how acetyl-coenzyme A links metabolism to gene expression
乙酰辅酶 A 如何将代谢与基因表达联系起来的分子基础
- 批准号:
8783415 - 财政年份:2014
- 资助金额:
$ 7.73万 - 项目类别:
The molecular basis for how acetyl-coenzyme A links metabolism to gene expression
乙酰辅酶 A 如何将代谢与基因表达联系起来的分子基础
- 批准号:
8996048 - 财政年份:2014
- 资助金额:
$ 7.73万 - 项目类别:
The molecular basis for how acetyl-coenzyme A links metabolism to gene expression
乙酰辅酶 A 如何将代谢与基因表达联系起来的分子基础
- 批准号:
9125794 - 财政年份:2014
- 资助金额:
$ 7.73万 - 项目类别:














{{item.name}}会员




