Radiomic and genomic predictors of breast cancer risk
乳腺癌风险的放射组学和基因组预测因子
基本信息
- 批准号:10839165
- 负责人:
- 金额:$ 68.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-13 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
ABSTRACT
Over 40,000 U.S. women will die of breast cancer each year. Screening mammography saves lives but also
results in potential harms. Personalized screening regimens tailored to a woman's individual risk can both
improve early detection of lethal cancers through more intensive regimens for high-risk women, and reduce
over-screening and over-treatment of low-risk women. However, the current clinical breast cancer risk
prediction models are insufficiently accurate for discriminating high-risk and low-risk women. New radiomic
deep learning algorithms, which automatically mine troves of breast tissue features from a woman's screening
mammogram to predict her future cancer risk, have enormous potential to transform breast cancer screening,
but have not been independently validated. New polygenic risk scores (PRS) for breast cancer also show
promise for improving risk prediction, although still costly to implement on a population scale. We propose to
examine whether adding radiomic and genomic risk scores can significantly improve current clinical risk
prediction models in a large, diverse population-based cohort of 178K women enrolled in Kaiser Permanente's
Research Program on Genes, Environment and Health (RPGEH) who were screened with 2D full-field digital
mammography (FFDM). We also propose to extend the best performing radiomic deep learning algorithms to
diverse screening mammography systems utilized in two large health care settings in California and New York,
including a cohort of 50K women screened with 3D digital breast tomosynthesis (DBT) in the Mount Sinai
Health System (MSHS). The specific aims are to: (1) Evaluate the performance of radiomic deep learning
breast cancer risk prediction models, estimate their associations with 5-year and 10-year breast cancer risk,
and determine the extent to which the associations are independent of known clinical risk factors; (2)
Determine whether radiomic and genomic risk scores independently predict breast cancer risk, and explore
potential differences by race/ethnicity and other clinical risk factors; and (3) Transfer the best radiomic deep
learning algorithm(s) from 2D FFDM to 3D tomosynthesis. The proposed research will fill essential knowledge
gaps needed to realize the potential of radiomics and genomics by validating new radiomic algorithms,
quantifying the improvements in model performance above traditional risk factor models and new polygenic
risk scores, exploring differences by race/ethnicity, and extending the best radiomic tools to diverse
mammography systems utilized in two large multi-ethnic health care settings.
1
摘要
每年将有超过4万名美国女性死于乳腺癌。筛查乳房X光检查挽救了生命,但也
会带来潜在的危害。针对女性个体风险量身定做的个性化筛查方案
通过对高危妇女进行更密集的治疗,改善致命癌症的早期发现,并减少
对低风险妇女的过度筛查和过度治疗。然而,目前临床上乳腺癌的风险
预测模型在区分高风险和低风险女性方面不够准确。新放射学
深度学习算法,自动从女性筛查中挖掘乳房组织特征宝库
乳房X光检查预测她未来的癌症风险,有巨大的潜力改变乳腺癌筛查,
但尚未得到独立验证。新的乳腺癌多基因风险评分(PR)也显示
承诺改进风险预测,尽管在人口规模上实施仍然代价高昂。我们建议
检查添加放射和基因组风险评分是否可以显著改善当前的临床风险
在Kaiser Permanente‘s登记的17.8万名女性中,基于人群的大型、多样化的预测模型
基因、环境与健康研究计划(RPGEH)的2D全场数字化筛查
乳房X光照相(FFDM)。我们还建议将性能最好的放射学深度学习算法扩展到
在加利福尼亚州和纽约的两个大型医疗保健机构中使用的多样化筛查乳房X光照相系统,
包括在西奈山接受3D数字乳房断层合成(DBT)筛查的50K名妇女
卫生系统(MSHS)。具体目标是:(1)评估放射学深度学习的绩效
乳腺癌风险预测模型,估计它们与5年和10年乳腺癌风险的关系,
并确定关联与已知临床风险因素的独立程度;(2)
确定放射和基因组风险评分是否独立预测乳腺癌风险,并探索
种族/民族和其他临床危险因素的潜在差异;以及(3)转移最佳放射深度
从二维有限差分到三维层析合成的学习算法(S)。拟议中的研究将填补必要的知识
通过验证新的放射组学算法来实现放射组学和基因组学的潜力所需的差距,
量化传统风险因素模型和新多基因模型在模型性能方面的改进
风险评分,探索种族/民族的差异,并将最佳放射学工具扩展到不同的
乳房X光照相系统在两个大型多种族医疗保健环境中使用。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LAUREL A HABEL其他文献
LAUREL A HABEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LAUREL A HABEL', 18)}}的其他基金
Radiomic and genomic predictors of breast cancer risk
乳腺癌风险的放射组学和基因组预测因子
- 批准号:
10317507 - 财政年份:2021
- 资助金额:
$ 68.11万 - 项目类别:
Genomic and Transcriptomic Analysis of Mammographic Density
乳腺X线密度的基因组和转录组分析
- 批准号:
10819733 - 财政年份:2019
- 资助金额:
$ 68.11万 - 项目类别:
Genomic and Transcriptomic Analysis of Mammographic Density
乳腺X线密度的基因组和转录组分析
- 批准号:
10295775 - 财政年份:2019
- 资助金额:
$ 68.11万 - 项目类别:
Genomic and Transcriptomic Analysis of Mammographic Density
乳腺X线密度的基因组和转录组分析
- 批准号:
9917230 - 财政年份:2019
- 资助金额:
$ 68.11万 - 项目类别:
Genome-wide Pleiotropy Scan across Multiple Cancers
多种癌症的全基因组多效性扫描
- 批准号:
9316559 - 财政年份:2016
- 资助金额:
$ 68.11万 - 项目类别:
Mammographic Density & Prognosis among Breast Cancer Intrinsic Subtypes
乳腺X线密度
- 批准号:
8688965 - 财政年份:2012
- 资助金额:
$ 68.11万 - 项目类别:
Mammographic Density & Prognosis among Breast Cancer Intrinsic Subtypes
乳腺X线密度
- 批准号:
8874160 - 财政年份:2012
- 资助金额:
$ 68.11万 - 项目类别:
Mammographic Density & Prognosis among Breast Cancer Intrinsic Subtypes
乳腺X线密度
- 批准号:
8549181 - 财政年份:2012
- 资助金额:
$ 68.11万 - 项目类别:
Mammographic Density & Prognosis among Breast Cancer Intrinsic Subtypes
乳腺X线密度
- 批准号:
8345340 - 财政年份:2012
- 资助金额:
$ 68.11万 - 项目类别:
相似国自然基金
果蝇转座元件和piRNA之间的基因组冲突及对杂交不育的影响
- 批准号:91431101
- 批准年份:2014
- 资助金额:120.0 万元
- 项目类别:重大研究计划
优化基因组策略搜寻中国藏族内耳畸形的致病基因及其致聋机制研究
- 批准号:31071099
- 批准年份:2010
- 资助金额:40.0 万元
- 项目类别:面上项目
电离辐射诱发间充质干细胞基因组非稳定性的研究
- 批准号:31070759
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
辣椒胞质雄性不育恢复性主效基因精密图谱分析
- 批准号:30800752
- 批准年份:2008
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 68.11万 - 项目类别:
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
- 批准号:
10714930 - 财政年份:2023
- 资助金额:
$ 68.11万 - 项目类别:
Whole genome sequence interpretation for lipids to discover new genes and mechanisms for coronary artery disease
脂质的全基因组序列解释,以发现冠状动脉疾病的新基因和机制
- 批准号:
10722515 - 财政年份:2023
- 资助金额:
$ 68.11万 - 项目类别:
Monitoring Immunotherapy Response via Gene Silencing Landscapes in Cell-Free DNA
通过游离 DNA 中的基因沉默景观监测免疫治疗反应
- 批准号:
10760450 - 财政年份:2023
- 资助金额:
$ 68.11万 - 项目类别:
Molecular Mechanisms of Dystrophin Expression in Ameliorated Phenotypes
改善表型中肌营养不良蛋白表达的分子机制
- 批准号:
10660396 - 财政年份:2023
- 资助金额:
$ 68.11万 - 项目类别:
Project 2: Combination PARPi-BETi to Overcome PARPi Resistance
项目 2: PARPi-BETi 组合克服 PARPi 耐药性
- 批准号:
10713053 - 财政年份:2023
- 资助金额:
$ 68.11万 - 项目类别:
Interactions of SARS-CoV-2 infection and genetic variation on the risk of cognitive decline and Alzheimer’s disease in Ancestral and Admixed Populations
SARS-CoV-2 感染和遗传变异的相互作用对祖先和混血人群认知能力下降和阿尔茨海默病风险的影响
- 批准号:
10628505 - 财政年份:2023
- 资助金额:
$ 68.11万 - 项目类别:
Multi-Omics Predictors of Oral HPV Outcomes among PLWH
PLWH 口腔 HPV 结果的多组学预测
- 批准号:
10557585 - 财政年份:2023
- 资助金额:
$ 68.11万 - 项目类别:
Genomic, gene-environment and casual inference studies in diabetic complications
糖尿病并发症的基因组、基因环境和随意推理研究
- 批准号:
10639507 - 财政年份:2023
- 资助金额:
$ 68.11万 - 项目类别:
Comprehensive characterization of prostate stromal gene expression and association with lethal prostate cancer
前列腺基质基因表达的综合表征及其与致死性前列腺癌的关联
- 批准号:
10759608 - 财政年份:2023
- 资助金额:
$ 68.11万 - 项目类别:














{{item.name}}会员




