Novel Hybrid Computational Models to Disentangle Complex Immune Responses
新型混合计算模型可解开复杂的免疫反应
基本信息
- 批准号:10794448
- 负责人:
- 金额:$ 17.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-26 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAddressAntigen-Antibody ComplexBiologicalBiological SciencesBiologyBiomedical ResearchCOVID-19 pandemicCell modelCollaborationsComputational algorithmComputer ModelsComputing MethodologiesDangerousnessDataDifferential EquationDimensionsDiseaseEducational process of instructingEquationEquilibriumEtiologyEuropeEventFamilyGenerationsHybridsIdahoImmuneImmune TargetingImmune responseImmune systemImmunologic FactorsImmunotherapyInfectionInfluenzaInnate Immune SystemKnowledgeLaboratory FindingMachine LearningMathematicsMeasuresMediatingMethodsModelingMolecularMorbidity - disease rateMusParameter EstimationPathologyPlayPredictive ValuePublic HealthPublic PolicyRhinovirusRoleScienceScientistSeveritiesSeverity of illnessSystemTechniquesTestingTherapeuticTimeTrainingUniversitiesViralViral Respiratory Tract InfectionVirusVirus Diseasesattenuationbiological systemsco-infectioncomplex biological systemscomputational suitecomputerized toolsdata integrationdesignexperimental studyfictional workshigh dimensionalityhigh rewardhigh riskhuman diseaseimmunoregulationimprovedinfluenza infectioninnovationlarge datasetsmachine learning algorithmmachine learning methodmathematical methodsmathematical modelmathematical sciencesmortalitynovelpandemic influenzapathogenic viruspredictive modelingpreventrespiratorysoundtheories
项目摘要
Most quantitative models in biomedical research have been formulated by ordinary differential equations
(ODEs). Despite the great contributions ODEs have made to biology and beyond, the high-dimensional,
time-dependent factors of the immune system still pose a significant challenge to the predictive value of
ODEs as it would require several hundred equations and thousands of parameters to be estimated. The
recent rise of machine learning as a powerful computational tool to integrate large datasets presents a
special opportunity to deal with the inherent complexity of biological systems. However, machine learning
approaches do not consider the mechanistic knowledge of the underlying interactions. Preliminary studies
that combine ODEs and machine learning highlight that these computational algorithms could be on the
cusp of a major revolution. Remarkably enough, however, no parameter estimation theory exists to
integrate simultaneously both approaches. We propose to create new hybrid models and test their
predictions in a mouse viral coinfection system to address a central vexation for infection biology which is
how and when to modulate immune responses to mitigate mortality during lethal respiratory viral infection.
At the interface between mathematical and life sciences, we will develop and analyze a novel suite of
computational models that will integrate the underlying biological mechanisms to manage ill-posed
problems and explore massive design spaces, allowing for robust predictions from complex biological
systems. To validate and test our novel and foundational mathematical approaches, we will generate the
biological data from a mouse infection system with a mild viral pathogen (rhinovirus) two days before
infection with a lethal viral pathogen (influenza) that results in reduced disease compared to single infection
alone. We hypothesize that this system can train our mathematical models in a natural way how the innate
immune system can be manipulated to reduce mortality to lethal infections and beyond. Key model
predictions will be tested by targeted immune system manipulation during lethal infection, paving the way to
understanding the role of complex immune interactions in respiratory viral disease pathology.
生物医学研究中的大多数定量模型都是用常微分方程来表示的
(ODE)。尽管ODE对生物学和其他领域做出了巨大贡献,但高维,
免疫系统的时间依赖性因素仍然对免疫系统的预测价值构成重大挑战
常微分方程,因为它需要几百个方程和数千个参数来估计。的
最近兴起的机器学习作为一种强大的计算工具来整合大型数据集,
处理生物系统固有复杂性的特殊机会。然而,机器学习
这些方法不考虑潜在相互作用的机械知识。初步研究
联合收割机ODE和机器学习突出了这些计算算法可以在
一场重大革命的风口浪尖然而,值得注意的是,没有参数估计理论存在,
同时将两种方法结合起来。我们建议创建新的混合模型,并测试其
在小鼠病毒共感染系统中的预测,以解决感染生物学的中心烦恼,
如何以及何时调节免疫应答以降低致命呼吸道病毒感染期间的死亡率。
在数学和生命科学之间的接口,我们将开发和分析一套新颖的
计算模型,将整合潜在的生物机制,以管理不适定
问题并探索巨大的设计空间,允许从复杂的生物学中进行稳健的预测
系统.为了验证和测试我们新颖的基础数学方法,我们将生成
来自两天前具有温和病毒病原体(鼻病毒)的小鼠感染系统的生物学数据
与单一感染相比,感染致命病毒病原体(流感)导致疾病减少
一个人我们假设这个系统可以以自然的方式训练我们的数学模型,
可以操纵免疫系统以降低致命感染和其他感染死亡率。重点型号
在致命感染期间,预测将通过有针对性的免疫系统操作进行测试,
了解复杂的免疫相互作用在呼吸道病毒疾病病理学中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Esteban Aberlardo Hernandez Vargas其他文献
Esteban Aberlardo Hernandez Vargas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 17.18万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 17.18万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 17.18万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 17.18万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 17.18万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 17.18万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 17.18万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 17.18万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 17.18万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 17.18万 - 项目类别:
Research Grant