SMARTCORE Technology: Using AI and Patient Tissue to Identify Potential Cancer Therapies for Ultra-rare Cancers
SMARTCORE 技术:利用人工智能和患者组织来识别极罕见癌症的潜在癌症疗法
基本信息
- 批准号:10796286
- 负责人:
- 金额:$ 250万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Project Summary
Our proposal presents a new approach, called SmartCore, to tackle the challenge of finding practical solutions
for ultra-rare cancers. We aim to use an AI-driven drug screening platform designed to test primary human tumor
tissue. Our strategy is to identify and repurpose drugs that exhibit activity against the cancer of interest. We
circumvent the latency of developing organoids or patient-derived xenograft models for drug screening by
utilizing intact tumors as organotypic cultures. Using a machine-learning algorithm, we can predict tumor
sensitivity to a panel of ~4,000 drugs, including ~1800 FDA-approved drugs, by inputting responses to a set of
computationally selected 254 compounds. Our long-term goal is to create a robust drug and target discovery
method for individual cancers, irrespective of rarity, that directly links to clinical application, thereby addressing
a critical ‘bench-to-bedside’ gap in personalized and precision oncology. To realize our goal, we intend to expand
the capability of our platform to make use of clinical needle biopsies. This will vastly increase the utility of our
SmartCore technology to analyze biopsy samples from any tumor that can be shipped to our processing facility
within 24 hrs. This proposal will demonstrate the proof-of-concept of our SmartCore platform in an ultra-rare
condition, fibrolamellar cancer of the liver, with two specific aims. Aim 1 is to discover therapeutics for
fibrolamellar cancer using AI-based chemical screening. Here, we will establish technical parameters for optimal
performance of our AI-based screening platform using independent FLC cohorts obtained from multiple sources,
validate the top ‘hits’ using established patient-derived xenograft models from three independent human FLCs,
and deduce signaling networks and proteins targeted by the candidate drugs, highlighting molecular pathways
important for the survival of FLC. Aim 2 is to develop an AI-based chemical screening approach using needle
biopsies. To broaden the impact of our technology, we will modify our AI-based screening to accommodate 18-
gauge core needle biopsies routinely performed in clinical practice. We will curate a set of <40 drugs for FLC-
specific testing as the basis for drug prediction using our deep neural network algorithm, test the accuracy of this
approach by comparing needle biopsies with larger tissue slices in our FLC population and optimize pre-analytic
conditions to yield reproducible results. If successful, our technology will make use of needle core biopsies, be
agnostic to the underlying molecular derangement, screen a large collection of compounds using deep neural
network algorithms, and require a short turnaround time of one week from start to finish; all of which are attributes
of an ideal test that overcomes the Achilles heel of personalized oncology.
项目摘要
我们的提案提出了一种称为SmartCore的新方法,以应对寻找实际解决方案的挑战
治疗罕见癌症我们的目标是使用人工智能驱动的药物筛选平台,旨在测试原发性人类肿瘤
组织.我们的策略是识别和重新利用对感兴趣的癌症表现出活性的药物。我们
通过以下方式规避开发用于药物筛选的类器官或患者来源的异种移植模型的潜伏期:
利用完整的肿瘤作为器官型培养物。使用机器学习算法,我们可以预测肿瘤
通过输入对一组约4,000种药物(包括约1800种FDA批准的药物)的反应,
计算选择的254种化合物。我们的长期目标是创造一个强大的药物和目标发现
针对个体癌症的方法,无论罕见与否,都直接与临床应用联系起来,从而解决
个性化和精确肿瘤学中的关键“实验室到床边”差距。为了实现我们的目标,我们打算扩大
我们的平台能够利用临床穿刺活检。这将大大提高我们的实用性。
SmartCore技术用于分析任何肿瘤的活检样本,这些样本可以运送到我们的处理设施
24小时内。该提案将以一种极其罕见的方式展示我们SmartCore平台的概念验证。
条件,肝纤维板层癌,有两个具体的目标。目的1是发现治疗方法,
纤维板层癌使用人工智能为基础的化学筛选。在这里,我们将建立最佳的技术参数
我们基于AI的筛查平台使用从多个来源获得的独立FLC队列的性能,
使用来自三个独立的人FLC的已建立的患者来源的异种移植物模型验证最高“命中”,
并推导出候选药物靶向的信号网络和蛋白质,突出分子途径
这对刚果解放阵线的生存至关重要。目标2是开发一种基于人工智能的化学筛选方法,
活组织检查为了扩大我们技术的影响,我们将修改我们基于人工智能的筛选,以适应18-
在临床实践中常规进行的标准芯针活检。我们将为FLC策划一套<40种药物-
具体测试作为药物预测的基础,使用我们的深度神经网络算法,测试这种准确性。
在我们的FLC人群中,通过比较针吸活检与较大组织切片的方法,
条件以产生可再现的结果。如果成功,我们的技术将利用针芯活检,
不可知的潜在的分子紊乱,筛选大量的化合物,使用深层神经网络
网络算法,并且从开始到结束需要一周的短周转时间;所有这些都是属性
一个理想的测试,克服了个性化肿瘤学的致命弱点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taran Singh Gujral其他文献
Taran Singh Gujral的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taran Singh Gujral', 18)}}的其他基金
Targeting PLK1 signaling for the treatment of fibrolamellar carcinoma
靶向 PLK1 信号传导治疗纤维板层癌
- 批准号:
10742683 - 财政年份:2023
- 资助金额:
$ 250万 - 项目类别:
相似国自然基金
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Journal of Computer Science and Technology
- 批准号:61224001
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Journal of Materials Science & Technology
- 批准号:51024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Computer Science and Technology
- 批准号:61040017
- 批准年份:2010
- 资助金额:4.0 万元
- 项目类别:专项基金项目
相似海外基金
An innovative international payment collection platform using fintech and FPS technology to support SMBs with international transactions that could cut fees by 83%
An%20innovative%20international%20 payment%20collection%20platform%20using%20fintech%20and%20FPS%20technology%20to%20support%20SMBs%20with%20international%20transactions%20that%20could%20cut%20fees%20by%2083%
- 批准号:
10098770 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Collaborative R&D
GOALI: Understanding granulation using microbial resource management for the broader application of granular technology
目标:利用微生物资源管理了解颗粒化,以实现颗粒技术的更广泛应用
- 批准号:
2227366 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
Using generative AI combined with immersive technology to treat anxiety disorders
利用生成式人工智能结合沉浸式技术治疗焦虑症
- 批准号:
10109165 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Launchpad
Using gene technology for improving crop morphology for protected environments
利用基因技术改善作物形态以保护环境
- 批准号:
BB/Z514421/1 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Research Grant
Precision Guided Nanoparticle-Based Gene Editing of High-Grade Glioblastoma using CRISPR Technology
使用 CRISPR 技术对高级别胶质母细胞瘤进行精确引导的基于纳米颗粒的基因编辑
- 批准号:
24K10440 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Using Advanced Technology to Enhance Learning and Teaching in Science Labs at Two-Year Colleges
利用先进技术加强两年制学院科学实验室的学习和教学
- 批准号:
2329563 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
PFI (MCA): Improving Dental Technology using Microbial Transplantation in the Mouth
PFI (MCA):利用口腔微生物移植改进牙科技术
- 批准号:
2322229 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
Spatial pathophysiological study on cardiorenal syndrome using novel tissue glyco-imaging technology
利用新型组织糖成像技术进行心肾综合征的空间病理生理学研究
- 批准号:
24K19073 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
PFI-RP: Preventing Intimate Partner Violence Using Digital Technology: A Transdisciplinary Approach
PFI-RP:利用数字技术预防亲密伴侣暴力:跨学科方法
- 批准号:
2329797 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Continuing Grant
Hydrogen Liquefaction Prototype Using Sustainable Manufacturing Technology
采用可持续制造技术的氢液化原型
- 批准号:
10073882 - 财政年份:2023
- 资助金额:
$ 250万 - 项目类别:
Grant for R&D