Structural and functional studies of glycosyl hydrolases governing Vibrio biofilm dispersal
控制弧菌生物膜分散的糖基水解酶的结构和功能研究
基本信息
- 批准号:10795423
- 负责人:
- 金额:$ 47.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-06 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:Active SitesAdhesionsAffectAntibiotic ResistanceAntibiotic TherapyAntibioticsBacteriaBacterial Antibiotic ResistanceBacterial InfectionsBiochemicalBiochemistryBiological AssayBiological ModelsBiomedical EngineeringBiophysical ProcessCellsCommunicable DiseasesCommunitiesComplementCreativenessCrystallizationCuesDNADevelopmentDigestionEnvironmentExtracellular MatrixExtracellular Matrix ProteinsFosteringGoalsGrowthHomologous GeneHumanHydrolaseImageImmune systemIn VitroInfectionKineticsKnowledgeLearningMicrobeMicrobial BiofilmsMissionModelingMolecularMutagenesisMutationNucleic AcidsNutrientOutcomePathogenicityPhenotypePolysaccharidesPredatory BehaviorProcessPropertyProtein SecretionProteinsProteolysisPublic HealthResearchResolutionRoleSiteSite-Directed MutagenesisSpecificityStructureSurfaceTechniquesTherapeuticTherapeutic UsesUnited States National Institutes of HealthVibrioVibrio choleraeWorkX-Ray Crystallographycrosslinkdrug resistant bacteriaexperimental studyextracellularfightinghuman diseasehuman pathogenin vivoinsightmolecular scalemutantpathogenpathogenic bacteriaphysical insultreconstitutionresponsescaffoldtherapy designthree dimensional structuretool
项目摘要
PROJECT SUMMARY/ABSTRACT
Biofilms are surface-attached communities of bacteria surrounded by an extracellular protective matrix
composed of polysaccharides, proteins, and nucleic acids. Biofilms protect bacterial pathogens from antibiotics
and the host immune system as well as from predation, nutrient limitation, and physical insults while in
environmental reservoirs. As important as the formation of biofilms, dispersal mechanisms allow bacteria to
degrade the biofilm matrix and escape in response to changes in internal or environmental cues.
Understanding how biofilms disperse is important in developing new strategies for combatting biofilm-related
infections and antibiotic-resistant bacteria. The long-term goal of this research is to use a structure/function
approach to understand the mechanisms of biofilm formation, adhesion, and dispersal at the molecular scale.
The overall objective of this proposal is to understand the mechanism of biofilm dispersal using the model
biofilm-forming bacterium Vibrio cholerae. Vibrio cholerae biofilms are composed of a secreted
exopolysaccharide called Vibrio polysaccharide (VPS), along with secreted matrix proteins and extracellular
DNA. The central hypothesis of this proposal is that RbmB, a secreted putative glycosyl hydrolase, is a key
factor in the dispersal of Vc biofilms and that it digests VPS leading to breakdown of the extracellular matrix.
We aim to understand the structure and mechanism of RbmB-associated VPS digestion by pursuing the
following three specific aims: 1) Understand the VPS cleavage specificity, mechanism and kinetic properties of
the putative glycosyl hydrolase RbmB from Vibrio cholerae; 2) Determine the three-dimensional structure and
enzymatic mechanism of RbmB in cleaving VPS; and 3) Using in vitro and in vivo techniques, determine how
RbmB activity leads to degradation of the biofilm and Vibrio cholerae dispersal. We will use a combination of
enzymatic assays, site-directed mutagenesis, X-ray crystallography, and imaging of living Vibrio cholerae
biofilms to complete these aims. Our rationale for the proposed work is that by understanding the structure and
mechanism of RbmB, its specificity towards VPS, and the role of matrix proteins in biofilm dispersal, we will
gain a basic understanding of how biofilms disperse. While this proposal focuses on Vibrio cholerae, we expect
that these insights will be applicable to other bacterial pathogens who produce biofilms using secreted
exopolysaccharides and matrix proteins. Results from this proposal will contribute to our understanding of
glycosyl hydrolases aiding their potential therapeutic use in the treatment of antibiotic-resistant and pernicious
bacterial infections. This work also promises new research possibilities in the development of specifically
cleavable polysaccharide scaffolds for bioengineering and biomedical applications.
项目摘要/摘要
生物膜是由细胞外保护性基质包围的表面附着的细菌群落
由多糖蛋白质和核酸组成生物膜保护细菌病原体免受抗生素的侵害
和宿主免疫系统以及捕食,营养限制和物理损伤,而在
环境水库。与生物膜的形成同样重要的是,分散机制使细菌能够
降解生物膜基质并响应于内部或环境线索的变化而逃逸。
了解生物膜是如何分散的,对于开发对抗生物膜相关疾病的新策略非常重要。
感染和抗药性细菌。这项研究的长期目标是使用一种结构/功能
在分子尺度上理解生物膜形成、粘附和分散机制的方法。
本提案的总体目标是利用该模型了解生物膜扩散的机制
生物膜形成细菌霍乱弧菌。霍乱弧菌生物膜由一种分泌的
一种称为弧菌多糖(VPS)的胞外多糖,沿着分泌的基质蛋白和胞外
DNA.该建议的中心假设是,RbmB,一种分泌的假定糖基水解酶,是一种关键酶,
在Vc生物膜的分散的因素,它破坏VPS,导致细胞外基质的分解。
我们的目标是通过研究RbmB相关的VPS消化的结构和机制,
以下三个具体目标:1)了解VPS切割的特异性、机制和动力学特性,
来自霍乱弧菌的推定糖基水解酶RbmB; 2)确定三维结构,
RbmB在切割VPS中的酶促机制;以及3)使用体外和体内技术,确定RbmB如何切割VPS。
RbmB活性导致生物膜的降解和霍乱弧菌的扩散。我们将结合使用
活霍乱弧菌的酶测定、定点诱变、X射线晶体学和成像
生物膜来完成这些目标。我们提出这项工作的理由是,通过了解结构和
RbmB的机制,其对VPS的特异性,以及基质蛋白在生物膜分散中的作用,我们将
获得生物膜如何分散的基本了解。虽然这项建议的重点是霍乱弧菌,我们预计,
这些见解将适用于其他细菌病原体谁生产生物膜使用分泌
胞外多糖和基质蛋白。该提案的结果将有助于我们了解
糖基水解酶有助于它们在治疗抗肿瘤和恶性肿瘤中的潜在治疗用途
细菌感染这项工作也预示着新的研究可能性,在发展具体的
用于生物工程和生物医学应用的可切割多糖支架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD A OLSON其他文献
RICHARD A OLSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD A OLSON', 18)}}的其他基金
Mechanism of Cell Membrane Targeting by Vibrio Cholerae Cytolysin
霍乱弧菌溶细胞素靶向细胞膜的机制
- 批准号:
8366847 - 财政年份:2012
- 资助金额:
$ 47.12万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 47.12万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 47.12万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 47.12万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 47.12万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 47.12万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 47.12万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 47.12万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 47.12万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 47.12万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 47.12万 - 项目类别: