Pathways of Succinate Accumulation and Adenine Nucleotide Depletion in Cardiac Ischemia

心脏缺血中琥珀酸积累和腺嘌呤核苷酸消耗的途径

基本信息

  • 批准号:
    10794933
  • 负责人:
  • 金额:
    $ 4.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract The energy utilized by the heart for contractions is primarily made by aerobic respiration. This process consists of oxidizing carbon substrates to fuel ATP synthesis. An essential substrate is oxygen which acts as the final electron acceptor. Without oxygen, ATP is rapidly depleted from the myocardium. There are a number of scenarios where the heart is exposed to hypoxic or anoxic conditions. Ischemia occurs when blood flow becomes restricted preventing oxygen delivery to part of the muscle. This occurs in ischemic heart disease. If blood flow is not restored in time, it can lead to irreversible damage, termed myocardial infarction. Organ transplantation is another scenario where the heart is away from blood supply during transportation. The amount of time the muscle is without oxygen determines the health of the tissue for the recipient. Situations such as these that involve an ischemic environment induce metabolic changes that damage the myocardium during reperfusion when oxygen is restored, known as ischemia-reperfusion injury. One such change is succinate accumulation. During reperfusion, the immense amount of succinate is responsible for reactive oxygen species (ROS) production that puts oxidative stress on cardiomyocytes. Another metabolic change seen during ischemia is the depletion of adenine nucleotides. This group includes AMP, ADP, and ATP and are all essential energy carriers in the myocardium. The depletion of these molecules results in impaired energy metabolism in the heart. Little is known about the mechanisms behind these metabolic changes. The goal of this project is to uncover the primary pathways of succinate accumulation and adenine nucleotide depletion in ischemic myocardium. The working hypothesis is the combined actions of the tricarboxylic acid (TCA) cycle, malate-aspartate shuttle (MAS), and the purine nucleotide cycle (PNC) provide the substrate utilized for succinate production and adenine nucleotides entering the PNC are shuttled into purine degradation pathways. Experiments involving anoxic isolated heart mitochondrial, ischemic ex vivo hearts, and transgenic rats will be used jointly with computational models of myocardial metabolism to test this hypothesis. The metabolic states of these different systems will be quantified by metabolomics and enzyme inhibitors that will be used to assess primary pathways of accumulation and depletion. Computational models will help with experimental design, refining, and testing hypotheses. The data from this project will have applications for both ischemic heart disease, organ transplantation, treatments for ischemia-reperfusion injury.
项目摘要/摘要 心脏用于收缩的能量主要由有氧呼吸产生。这一过程包括 氧化碳底物来推动三磷酸腺苷的合成。一种必不可少的底物是氧气,它充当最终的 电子受体。没有氧气,心肌中的三磷酸腺苷会迅速耗尽。有很多种 心脏暴露在缺氧或缺氧条件下的情况。当血液流动变得 限制将氧气输送到肌肉的一部分。这会发生在缺血性心脏病中。如果血液流动 如果不及时恢复,就会导致不可逆转的损害,称为心肌梗塞。器官移植是 另一种情况是心脏在运输过程中没有血液供应。肌肉的时间长短 无氧状态决定了受者组织的健康状况。这样的情况涉及到 缺血环境引起的代谢变化在再灌流期间对心肌造成损害 是恢复的,称为缺血-再灌注损伤。其中一个变化就是琥珀酸的积累。在.期间 再灌流时,大量的琥珀酸负责产生活性氧物种(ROS), 对心肌细胞造成氧化应激。在缺血期间出现的另一个代谢变化是脑细胞耗竭 腺嘌呤核苷酸。这个群体包括AMP、ADP和ATP,都是人体内必需的能量载体 心肌。这些分子的耗尽会导致心脏能量新陈代谢受损。鲜为人知 关于这些新陈代谢变化背后的机制。 这个项目的目标是揭示琥珀酸积累和腺嘌呤核苷酸的主要途径。 缺血心肌的耗竭。工作假说是三元酸的联合作用 (TCA)循环、苹果酸-天冬氨酸穿梭(MAS)和嘌呤核苷酸循环(PNC)提供所利用的底物 为了生产琥珀酸,进入PNC的腺核苷酸被穿梭到嘌呤的降解中 小路。缺氧离体心线粒体、缺血离体心和转基因的实验 大鼠将与心肌代谢的计算模型一起用来检验这一假设。这个 这些不同系统的代谢状态将通过代谢组学和酶抑制剂进行量化,这将是 用于评估积累和消耗的主要途径。计算模型将有助于 实验设计、提炼和检验假设。此项目中的数据将同时适用于这两个应用程序 缺血性心脏病,器官移植,缺血再灌注损伤的治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicole Collins其他文献

Nicole Collins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicole Collins', 18)}}的其他基金

Pathways of Succinate Accumulation and Adenine Nucleotide Depletion in Cardiac Ischemia
心脏缺血中琥珀酸积累和腺嘌呤核苷酸消耗的途径
  • 批准号:
    10534031
  • 财政年份:
    2022
  • 资助金额:
    $ 4.01万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
  • 批准号:
    2244994
  • 财政年份:
    2023
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了